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A nonlinear model for human balancing subjected to a saturated delayed

proportional–derivative–acceleration (PDA) feedback is analysed. Com-

pared to the proportional–derivative (PD) controller, it is confirmed that

the PDA controller improves local stability even for large feedback delays.

However, it is shown that the saturated PDA controller typically introduces

subcritical Hopf bifurcation into the system, which can also lead to falling

for large enough perturbations. The subcriticality becomes stronger as the

acceleration feedback gain increases or the saturation torque limit decreases.

These explain some features of human balancing failure related to the

increased reaction delay of inactive elderly.

1. Introduction
Standing and moving on two legs is an essential component of everyday

human activities. The related instability in the dynamics of quiet standing

has both advantages and disadvantages. On the one hand, standing in an

unstable position improves the mobility in the sense that minimum control

effort is needed to start moving in any desired direction. On the other hand,

the control should be maintained continuously to stabilize the upright position.

This balancing task is especially important at the beginning and at the end of

our lives. Babies need a long learning process to stand up, while elderly

people may have serious and even fatal injuries when they fall over. Research

[1,2] has shown that falling is the leading cause for elderly peoples’ injury,

which poses both health and economic burden for the individual family and

the whole society. It has also been recognized in [3] that more falls occur

during standing and weight transferring than during walking. This draws the

attention for the importance of possible perturbation levels in human balancing.

Because of the finite speed of signal propagation and processing in the central

nervous system, time delays are intrinsic components of neural control and have a

great influence on the stability of human balancing [4–10]. Helmholtz was the

first (see [11]) who showed that the speed of signal propagation is one order of

magnitude slower than the speed of sound. In addition to propagation time,

signal processing also takes time especially for complex information sources

like vision [12]. All these conductive and processing times lead to delays in the

range of 0.1–1 s in the human motion control system [13]. Time delay, especially

its processing part, increases with age for inactive elderly.

In case of quiet standing, primarily the vestibular system is used together with

the mechanoreceptors and the proprioceptors. In these cases, the reaction time is

estimated between 75 and 125ms (see [14,15]) for healthy adults, but it is in the

range of 153–177ms for elders (see [16]). This reaction delay can be even

longer for inactive elderly, tired and/or distracted persons. When the feedback

mechanism relies also on the visual sensory information (see [17,18]), the reaction

delay may increase up to 300ms or even longer (see [19]). Presumably, all the
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above sensory information are used during quiet standing,

resulting in a complex combination of the perceived signals

provided by the different sensory organs associated with

different conducting and processing delays. Therefore, reaction

delay is a key component in studying human balance control.

Balancing abilities are often analysed using linearized

dynamical models. However, nonlinearities are always present

and can increase the complexity of the dynamical behaviours

particularly as time delays become long. There are three

major sources of nonlinearities: (i) geometric nonlinearity;

(ii) sensory threshold; (iii) control force saturation. The geo-

metric nonlinearity is mainly related to the torque induced

by the gravitational force; this nonlinearity is usually neglected

in the standard region of sway angles. The sensory threshold

originates in a dead zone, which is a strong, small-scale nonli-

nearity. This nonlinearity has essential effects on the generation

of micro-chaotic dynamics [20,21], but it has only slight effect

on the stabilization of the large-scale system. During quiet

standing, the active torque provided at the ankle has a limit

according to the individual’s muscle capacity. This saturation

limit usually decreases with age for inactive people, which is

possibly an essential component of the causes for the falling

of the elderly, especially in case of unexpected perturbations.

Therefore, torque saturation should be of concern for the

balance control of the inactive elderly group.

Understanding the mechanism how humans maintain

balance is a substantial task in brain research. Most interpret-

ations are based on linear delayed proportional–derivative

(PD) controllers [13,22–24]. These models have been devel-

oped as a kind of biomechanical analogies of position

control of rigid body systems, like robots [25]. Linear PD con-

trollers are still one of the most popular control strategies due

to their simplicity and robustness [26] and they are widely

used in control theory of time delay systems [27,28]. It is

assumed that the human sensory system is able to perceive

signals about the angular position and angular velocity of

the human body. There are several studies in the specialist

literature which explained how these signals are provided

by the visual system [12], by the vestibular labyrinth [29] or

by the proprioceptive inputs [30]. For the purpose of

vibration control, the accelerometer has gained wide appli-

cations due to its low cost, small volume and light weight

[28]. Recent research has indicated that angular acceleration

signals might also be provided especially by the mechanore-

ceptive inputs through the tactile system [31]. Considering

the large time delays in human control, the use of acceleration

signals seems to be very advantageous in balancing [4]. It

was shown there that proportional–derivative–acceleration

(PDA) controllers was superior to the PD feedback by

increasing the critical delay margin by approximately 40%.

A less feasible but still interesting way to improve balan-

cing is the use of vertical periodic excitation at the ankle (see

[32]), which uses the principle of parametric excitation as in

the case of Kapitza’s pendulum [33]. Although stabilization

cannot be achieved only by parametric excitation due to the

unilateral constraint between the foot and the vibrating plat-

form, it can still contribute to the stabilization by feedback

control (see [34,35]).

This paper deals with a balancing model based on a

delayed PDA controller with geometric and saturation non-

linearities. It is shown that saturation nonlinearity has a

counterintuitive effect on the dynamics of balancing with

PDA controllers in contrast with the PD controllers. This

result provides new insights into the causes of increased

number of fall overs of inactive elderly people.

The structure of the paper is as follows. First, a neural–

mechanical model is presented for human balancing in the

sagittal plane involving reaction delay and saturation of

the active torque at the ankle. The governing equation

takes the form of a nonlinear neutral delay differential

equation (NDDE). In §3, linear stability is analysed, stability

charts are constructed and critical time delays are identified

as a function of the acceleration gain. In §4, the nonlinear

analysis is performed, namely, the Hopf bifurcation is

studied via symbolic normal form calculation and also via

the method of multiple scales. The results are confirmed by

a numerical path-following method. A case study is pre-

sented with biophysically plausible human parameters in

§5, which leads to the conclusions on the role of acceleration

gains and saturation nonlinearity in human balancing.

2. Neural–mechanical model
The neural–mechanical model of human balancing in the

sagittal plane is depicted in figure 1. The human body is

modelled as an inverted pendulum with mass m, moment

of inertia JAwith respect to pivot A, while l stands for the dis-

tance between the centre of gravity C and pivot A. The body

is controlled by the ankle torque Q at joint A. The ankle

torque Q consists of a passive torque Qp and an active

torque Qa. The passive torque Qp depends on the stiffness

and damping of the ankle joints, which are modelled by a tor-

sional spring of stiffness kt and a torsional dashpot of

damping bt. As shown by Loram & Lakie [36], the ankle stiff-

ness kt is provided by the foot, Achilles’ tendon and

aponeurosis, and it is not large enough to maintain balance

against the gravitational torque. Therefore, the additional

active control torque Qa is needed during quiet standing,

which is generated by the contractile elements of the ankle

muscles [37]. This torque is regulated by the central nervous

system based on the sensory signals about rotation angle w,

angular velocity _w and angular acceleration €w of the human

body. The governing equation of this model can then be

expressed in the form

JA€wÿmgl sinw ¼ ÿQ(t), ð2:1Þ

where

Q(t) ¼ Qp(t)þQa(t), ð2:2Þ

body kinematics j, j̇, j̈

reaction delay t

m, J
A

l = AC
—

muscle contraction

stiffness kt and damping bt

kt
bt

ankle torque Q
active torque Qa

Qa

C

passive torque Qp

A

j

Figure 1. Neural-mechanical model of balancing in sagittal plane.
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with the passive torque defined as

Qp(t) ¼ bt _wþ ktw: ð2:3Þ

The saturated active torque Qa(t) is assumed in the nonlinear

form

Qa(t) ¼ a tanh
1

a
Qc(t)

� �

, ð2:4Þ

where a denotes the limit of the active torque and its linear

part is

Qc(t) ¼ Kpw(tÿ t)þ Kd _w(tÿ t)þ Ka€w(tÿ t), ð2:5Þ

with Kp, Kd and Ka being the positive proportional, derivative

and acceleration gains, respectively. The delayed signals of

angle w and angular velocity _w are provided by the vestibular

system and proprioceptors, while the angular acceleration €w

signal is related to the information coming from the mechan-

oreceptors according to Newton’s Second Law [4]. The

saturation effect is shown in figure 2, where the active control

torque Qa tends to the saturation torque limit a as Qc

increases.

For simplicity, the delayed terms w(t 2 t), _w(tÿ t) and

€w(tÿ t) are denoted by wt, _wt and €wt, respectively, herein-

after. The dynamics of the quiet standing process is

governed by the following second-order nonlinear NDDE:

JA€wþbt _wþktwÿmglsinw¼ÿa tanh
1

a
(KpwtþKd _wtþKa€wt)

� �

,

ð2:6Þ

where the nonlinearity arises due to two reasons: (i) mechan-

ical nonlinearity as expressed by the sin function; (ii) control

nonlinearity as denoted by the tangent hyperbolic function.

This delay differential equation is of neutral type because

time delay also appears in the argument of the highest (i.e.

of the second) derivative of the body angle.

3. Linear stability of quiet standing and
parameter selection

The trivial solution w; 0 of the nonlinear NDDE (2.6) corre-

sponds to the desired equilibrium of quiet standing. First,

local stability is analysed by means of the linearized system

JA€wþ bt _wþ ktwÿmglw ¼ ÿKpwt ÿ Kd _wt ÿ Ka€wt: ð3:1Þ

This is further simplified to the form

€wþ b _wÿ aw ¼ ÿPwt ÿD _wt ÿ A€wt, ð3:2Þ

with new system parameters

b ¼ bt
JA

and a ¼ (mglÿ kt)

JA
. 0 ð3:3Þ

and new gain parameters

P ¼ Kp

JA
, D ¼ Kd

JA
and A ¼ Ka

JA
: ð3:4Þ

The positiveness of a is emphasized as it was shown in [36]

that the upright position of the body is unstable without con-

trol (that is when P ¼ 0, D ¼ 0, A ¼ 0) due to the fact that the

passive stiffness kt is less than the gravitational moment mgl.

As the contribution of the passive damping is usually small,

it is assumed to be negligible in further analysis: bt � 0, i.e.

b � 0.

The characteristic function of the linear NDDE (3.2) reads

D(l) ¼ l2 ÿ aþ (PþDlþ Al2) eÿlt: ð3:5Þ

If P � a, the characteristic equation D(l) ¼ 0 has at least one

non-negative real characteristic root, which indicates that the

linear system is not asymptotically stable for any combina-

tion of the control parameters D and A [4,38]. Furthermore,

if jAj . 1, then D(l) ¼ 0 has infinitely many characteristic

roots with positive real parts and the linear system is always

unstable [39]. Therefore, only the case P. a and jAj , 1 is

considered hereafter.

At the limit of stability, there exists a critical characteristic

root l ¼ ivc with vc referring to the critical angular frequency

of the arising oscillation which is the sway of the human

body. The decomposition of the characteristic function at

this critical characteristic root yields the real and imaginary

parts, respectively, as follows:

Re(D(ivc)) ¼ (Pÿ Av2
c ) cosvctþDvc sinvctÿ v2

c ÿ a ð3:6Þ

and

Im (D(ivc)) ¼ (Av2
c ÿ P) sinvctþDvc cosvctþ bvc: ð3:7Þ

The equations Re(D(ivc)) ¼ 0 and Im(D(ivc)) ¼ 0 lead to

sinvct ¼
vcD(v2

c þ a)

(v2
cAÿ P)2 þ v2

cD
2
. 0 ð3:8Þ

and

cosvct ¼ ÿv4
cAþ (aAÿ P)v2

c ÿ aP

(v2
cAÿ P)2 þ v2

cD
2

: ð3:9Þ

Eliminating the harmonic terms yields a quartic algebraic

equation in vc:

F(vc) :¼ (1ÿ A2)v4
c þ (2aÿ 2APÿD2)v2

c þ a2 ÿ P2 ¼ 0:

ð3:10Þ

For jAj , 1, the only positive root of equation (3.10) is

vc¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ÿ(2aÿ2APÿD2)þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(2aÿ2APÿD2)2ÿ4(a2ÿP2)(1ÿA2)
q

2(1ÿA2)

v

u

u

t

:

ð3:11Þ

The critical values of the time delay tc for possible stab-

ility switches can be expressed from (3.9) as a function of

Qa

Qc

a

a–a

–a

Qa = Qc

Qa = a tanh (Qc/a)

0

Figure 2. Saturated active control torque Qa versus linear active control

torque Qc. (Online version in colour.)
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the other parameters:

tck ¼
1

vc
2kpþ arccos ÿv4

cAþ (aAÿ P)v2
c ÿ aP

(v2
cAÿ P)2 þ v2

cD
2

 !" #

,

k ¼ 0, 1, . . . : ð3:12Þ

Let gk denote the derivative of the characteristic root l with

respect to the time delay t at its critical value tck, i.e.

gk :¼
dl(t)

dt

�

�

�

�

t¼tck

: ð3:13Þ

The stability of equilibrium with respect to the time delay can

be traced by means of the sign of the real part of gk (also

called root tendency): if sgn(Re gk) is positive (negative), a

pair of characteristic roots crosses the imaginary axis from

left to right (right to left). According to the theory of stability

switches [40], the system loses its stability when the delay

reaches its first critical value at k ¼ 0, because

sgn(Re gk) ¼ sgn
dF

dv

�

�

�

�

v¼vc

ð3:14Þ

for any non-negative integer k, where formula (3.10) gives

dF

dv

�

�

�

�

v¼vc

¼ 2vc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(2aÿ2APÿD2)2ÿ4(a2ÿP2)(1ÿA2)
q

. 0:

ð3:15Þ

Consequently, Hopf bifurcation occurs already at the first

critical value of the time delay defined by

tc :¼ tc0 ¼
1

vc
arccos ÿv4

cAþ aAÿPð Þv2
c ÿ aP

(v2
cAÿP)2þvcþ2D2

 !

, ð3:16Þ

where vc is given in (3.11). At this point, the root tendency is

g :¼ g0

¼ ÿ2tcPÿ ivctcDþ 2tcaeivctc

ÿtc2Pþ (1ÿ ivctc)tcDþ (2iþvctc)vctcAþ 2ivctceivctc
:

ð3:17Þ

The use of acceleration feedback gain was proposed in [4]

where several stability charts were constructed in the space of

control parameters P, D and A for the biophysically plausible

time delay and system parameters of human balancing.

Figure 3 presents a series of similar stability charts in the

(P,D) plane for varying acceleration gain A[[20.2, 0.8]. To

study the balancing of inactive people, the reaction delay is

fixed at t ¼ 0.2 s. The system parameter a ¼ 2.15 s22 comes

from (3.3) with human weight mg ¼ 600N, mass moment

of inertia JA ¼ 60 kgm2 and passive stiffness kt ¼ 471 Nm

rad21 (for details see [6]).

The stability charts clearly show that increasing accelera-

tion gain increases the stable region. The contour figures also

provide additional information about the robustness proper-

ties in different aspects. On the one hand, the contour levels

refer to different decay ratios of the oscillations scaled accord-

ing to the largest (negative) real part of the characteristic

roots; in this respect, the deep blue regions seem to be the

most robust with respect to initial values and perturbations.

On the other hand, the size and shape of the stable domains

also indicate how robust the stability is with respect to control

(or system) parameter uncertainties; for the corresponding

robustness definitions see [39,41,42].

However, it is not the robustness considerations that

determine primarily the choice of control parameters.

Milton et al. [19] have shown in case of stick balancing exper-

iments that control at the edge of stability minimizes the

energetic costs. Manoeuvrability could also be maximized

by tuning the parameters towards the edge of stability

domains. The control parameters could be tuned into even

slightly unstable regions where the sensory threshold (not

considered in this study) helps to achieve micro-chaotic or

long transient chaotic oscillations, which is satisfactory from

practical balancing viewpoint [21]. All these considerations

explain why the parameter point M in figure 3 is selected

at P ¼ 20 s22 and D ¼ 3.33 s21 which correspond to the

plausible gains Q1Kp ¼ 1200 Nm rad21 and Kd ¼ 200Nms

rad21 in accordance with (3.4) (see also [19,41,42]).

These parameters will be used when the results of the

subsequent bifurcation analysis is discussed, while the accel-

eration gain A and the reaction delay t will be still kept as

varying parameters to study their role in the dynamics of

10
A = –0.2 A = 0.2

0

–0.5

–1.0

–1.5

–2.0

–2.5

–3.0

–3.5

–4.0

–4.5

–5.0

A = 0

A = 0.4

0 5040

P (s–2)

302010 0 5040

P (s–2)

302010 0 5040

P (s–2)

R
e 

l
 (

s–
1
)

302010

A = 0.8A = 0.6

M

M M M

M M

8

6

D
(s

–
1
)

D
(s

–
1
)

4

2

0

10

8

6

4

2

0

Figure 3. Stability charts for the control gains P, D and A with human system parameter a ¼ 2.15 s22 and reaction delay t ¼ 0.2 s. Contours refer to the strength

of exponential decay in the stable domain. Point M represents biophysically plausible control parameters P and D. (Online version in colour.)
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balancing. The corresponding stability chart in the (A, t) par-

ameter plane is given in figure 4 together with critical

oscillation frequencies vc at the loss of stability.

4. Nonlinear analysis
As the reaction delay (especially its processing component)

strongly depends on the activity and awareness of human

beings, the delay t is one of the most varying human

parameters. To analyse the effect of varying the delay on

dynamics, the bifurcation parameter m is chosen as

t ¼ tc þ m ð4:1Þ

in the subsequent calculations where the critical delay tc is

given in (3.16).

For small angular positions, we use the approximations

sinw � wÿ 1

6
w3, tanhw � wÿ 1

3
w3 ð4:2Þ

and

1

(tc þ m)n
� 1

tnc
ÿ n

tnþ1
c

m: ð4:3Þ

By rescaling the time in the governing equation (2.6) as
~t ¼ t=t and dropping the tilde immediately for simplicity,

one can get the third-order approximated nonlinear system

in the form

€w(t)þA€w(tÿ1)þ(tcþm)D _w(tÿ1)þ(tc
2þ2mtc)(Pw(tÿ1)ÿaw(t))

¼ pgw(t)
3þ

X

hþjþk¼3

phjkw
h(tÿ1) _wj(tÿ1)€wk(tÿ1), ð4:4Þ

where pg and phjk correspond to the third-order nonlinear

geometric coefficient and the third-order nonlinear saturation

coefficients. Their specific expressions are given in table 1.

The amplitude r of the bifurcated periodic motion

satisfies

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ÿ8
Reg

ReD
(tÿ tc)

r

þ h:o:t:, ð4:5Þ

where the root tendency g is calculated in (3.17), and the com-

plex Poincaré–Lyapunov constant has the form

D ¼ Dg þ Ds ð4:6Þ

with Dg and Ds separating the contribution of geometric non-

linearity and saturation nonlinearity, respectively:

Dg ¼ ÿ mgl eivctctc
2

2JA(ÿ2tcPÿ ivctcDþ 2tcaeivctc )
g ð4:7Þ

and

Ds ¼
JA

2tc
2(P2 þ vc

2(D2 ÿ 2AP)þ vc
4A2)(Pþ ivcDÿ vc

2A)

a2(ÿ2tcPÿ ivctcDþ 2tcaeivctc )
g:

ð4:8Þ

The calculations are carried out according to centre manifold

reduction and normal form theory [43,44] and the algebraic

results are confirmed with the method of multiple scales

[45,46]. Both derivations are briefly summarized in the

appendix.

For the biomechanically plausible parameter set intro-

duced in §3, the above algebraic results of Hopf bifurcation

analysis are presented with numerical values in table 2,

with the sense of bifurcations in the stability chart of figure

4 and with the bifurcation diagrams in figures 5 and 6. The

sign of the Poincaré–Lyapunov constant ReD determines

the sense of Hopf bifurcation: it is supercritical or subcritical

if ReD. 0 or Re D, 0, respectively, i.e. the bifurcated

periodic motions are stable or unstable, respectively.

The bifurcation diagrams are validated also by the

numerical calculations of the stable and unstable periodic

motions with the help of the collocation method combined

with path-following techniques [47,48]. The corresponding

numerical results are represented by circles in figures 5 and

6, and they show perfect agreement with the analytical

results for small bifurcation parameter m, i.e. close to the criti-

cal time delays tc. The minor deviations further away from

the critical delays are the result of the third-order approxi-

mation used in the analytical calculations, while numerical

ones use the original nonlinearity in the form of the tangent

hyperbolic function in (2.4) and (4.2).

5. Discussion
In this section, the results of the linear stability analysis and

the Hopf bifurcation calculations are discussed in detail as

an attempt to interpret the role of acceleration feedback in

human balance.

The analysis of stability switch with respect to time delay

shows that the upright position loses its stability at the very
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0
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Figure 4. Critical time delays as a function of the acceleration gain A,

the sense of Hopf bifurcation and the oscillation frequencies at loss of stab-

ility. Saturation limit a ¼ 15 Nm and other parameters are chosen at M in

figure 3. (Online version in colour.)

Table 1. Nonlinear coefficients pg and phjk.
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first critical time delay tc (see (3.16)) of the PDA controller.

The positive effect of the acceleration feedback can be high-

lighted in two ways. On the one hand, the value of the

critical reaction delay tc gets larger as acceleration gain A

increases as shown in figure 4 for fixed position gain P and

velocity gain D. On the other hand, the stable parameter

region PD expands with increasing acceleration gain A as

shown in figure 3 for fixed reaction delay t. These figures

not only confirm the stability results of [4], but also provide

further validation of the mechanical model: at loss of stab-

ility, the oscillation frequencies in the range of 0.6–0.9 Hz

(figure 4) describe a realistic sway of the human body in criti-

cal balancing situations. These slow oscillations are

originated in the feedback control of the inverted pendulum

as explained in [14]; other higher-frequency oscillations may

exist due to errors in state estimation that is not studied here.

To interpret the nonlinear results, first, the physical mean-

ing of the Hopf bifurcations is summarized briefly. In case of

a supercritical Hopf bifurcation, small-amplitude stable oscil-

lations appear around the upright position after linear

stability is lost either by increased reaction delay or by mis-

tuned control gains. This results in a tiny sway, which

might be disturbing but the balancing is still practically suc-

cessful, and no fall over occurs. The situation is much more

dangerous in the case of subcritical Hopf bifurcations: the

existence of small-amplitude unstable oscillations reduces

the domain of attraction of the otherwise linearly stable con-

trolled upright position. This means that for perturbations

‘larger’ than these unstable oscillations, the control is

unable to stabilize the upright position anymore, which

leads to fall over, in spite of the fact that the reaction delay

and all the control parameters are tuned in the linearly

stable domain. This phenomenon is a special case of finite-

amplitude instabilities defined in a general context by

Krechetnikov & Marsden [49].

Table 2. Characteristic values and sense of Hopf bifurcations for different acceleration gains A in case of saturation limit a ¼ 15 Nm; other parameters are

chosen at M in figure 3.

A tc(s) vc/2p (Hz) Re g (s21) ReDg ReDs ReD sense

0 0.140 0.778 2.259 0.012 2656.488 2656.476 super

0.2 0.168 0.710 2.054 0.0001 23.945 23.945 super

0.4 0.196 0.659 1.866 20.014 311.735 311.721 sub

0.6 0.223 0.617 1.693 20.029 467.646 467.617 sub

0.8 0.251 0.583 1.535 20.046 542.313 542.267 sub
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Figure 5. Bifurcation diagrams with respect to time delay for different accel-

eration gains A; data taken from table 2. Continuous lines refer to analytical

results, series of circles refer to numerical results obtained by collocation

method and path following. Black colour represents stable branches; red

colourQ2 represents unstable branches. (Online version in colour.)
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The sense of the Hopf bifurcation is determined by the

Poincaré–Lyapunov constant ReD, which is the sum of the

geometry-related ReDg (see (4.7)) and the control satur-

ation-related Re Ds (see (4.8)). As the numerical values in

table 2 show, the effect of geometric nonlinearity is negligible,

because it is orders of magnitude smaller than the effect of

the saturation nonlinearity. Consequently, D � Ds.

The results in table 2 and the corresponding stability and

bifurcation diagrams in figures 4 and 5 can be interpreted in

the following way. For a traditional PD controller, i.e. when

A ¼ 0, the stability is lost at the small value of reaction

delay tc ¼ 0.14 s, but the Hopf bifurcation is supercritical

(see similar results for robotic control in [25]). In other

words, the human reaction delay is likely to be larger than

the critical one leading to linear instability, but the body

will sway with small amplitude only about the upright pos-

ition. As figure 5 shows clearly, the increasing acceleration

gain A pushes the appearance of the Hopf bifurcation for

larger critical reaction delays, but in the mean time, it changes

its sense to subcritical, and the amplitude of the unstable

oscillation gets smaller and smaller, and the domain of

attraction of stable balancing becomes narrower and nar-

rower. This is represented by two time-domain simulation

results in figure 7 for A¼ 0.6 and t¼ 0.21 s, 0.223 s¼ tc.

For a small perturbation given by the initial condition

w0(t);0.015 rad � 0.98, _w0(t) ; 0 rad s21, t[ [2t, 0], the

upright position is stabilized. However, for a larger pertur-

bation like w0(t);0.06 rad � 3.48, _w0(t) ; 0 rad s21, t[ [2t, 0],

the stability is lost after one sway that leads to fall over. Similar

kind of ‘hesitation’ during fall over has already been observed

in some of the video-recorded fall overs of inactive elderly

people (see [3]).

Equation (4.8) shows that Ds has a reciprocal relationship

with a2, which means that the subcriticality of Hopf bifur-

cation becomes worse as the saturation torque a becomes

smaller (figure 6). For elderly people, especially for inactive

ones, the maximum active torque provided at the ankle

could become very small, which means that already very

small perturbations may destabilize them.

6. Conclusion
We have shown that the benefits of acceleration feedback in

linear stabilization of quiet standing are limited due to the

nonlinear saturation effect of the active control torque.

Although the acceleration feedback improves the stability of

equilibrium for increasing reaction delays, it deteriorates the

robustness of stable balancing against perturbations as a

result of the occurrence of subcritical Hopf bifurcations.

The delayed PDA controller is equivalent to a predictive

controller where the actual state is predicted based on the

delayed angular position, velocity and acceleration. With

modelling the saturation of active control torque, an attempt

was made to interpret the mechanism of fall over even when

the reaction delay is smaller than the critical one. Although

acceleration feedback increases the critical delay to quite a

large extent, it does introduce subcritical Hopf bifurcation

into the system, which leads to increased sensitivity for

small perturbations. This sensitivity becomes even more criti-

cal as the maximum active torque levels at the ankle decrease

for inactive ageing groups.
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Appendix A

A.1. Centre manifold reduction combined with normal

form calculation
The NDDE (4.4) at the critical delay tc, i.e. for m ¼ 0, can be

recast into the following form:

d

dt
Dxt ¼ Lxt þ F(xt)þG(xt, _xt), ðA 1Þ

where x ¼ (x1, x2)
T ¼ (w, _w)T, xt(u);x(t þ u), 21 � u � 0,

xt [ C ¼ C([ÿ1, 0],R2) is the Banach space of continuous

functions from [21, 0] to R2 with the uniform norm, D and

L are bounded linear operators from C to R
2,

Df ¼ f(0)ÿ
Ð 0
ÿ1 d[z(u)]f(u), Lf ¼

Ð 0
ÿ1 d[h(u)]f(u), and h

and z are 2 � 2 matrix-valued functions of bounded variation

defined on [21, 0]. These matrices and operators take the

actual form

dh(u) ¼ 0 d(u)
t2c (ad(u)ÿ Pd(uþ 1)) ÿDtcd(uþ 1)

� �

du ðA 2Þ

and

dz(u) ¼ 0 0
0 A d(uþ 1)

� �

du, ðA 3Þ

with d denoting the Dirac-d function, and

Dxt ¼
x1(t)
x2(t)

� �

þ 0 0
0 A

� �

x1(tÿ 1)
x2(tÿ 1)

� �

ðA 4Þ

and

Lxt ¼ 0 1
atc

2 0

� �

x1(t)
x2(t)

� �

þ 0 0
ÿPtc

2 ÿDtc

� �

� x1(tÿ 1)
x2(tÿ 1)

� �

: ðA 5Þ

The nonlinear terms are expressed as

F(xt) ¼
0

pgx
3
1(t)þ

P

hþj¼3 phj0 x
h
1(tÿ 1)x

j
2(tÿ 1)

� �

ðA 6Þ

and

G(xt, _xt) ¼
0

X

hþjþk¼3k=0

phjkx
h
1(tÿ 1)x

j
2(tÿ 1) _xk2(tÿ 1)

2

4

3

5: ðA 7Þ
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The linearized part of equation (A 1) assumes the form

d

dt
Dxt ¼ Lxt: ðA 8Þ

Its solution defines a C0 semigroup T(t) on C, T(t)f ¼ xt(f ),

t � 0. The infinitesimal generator A associated with T(t) is

given by Af ¼ _f and has domain

Dom(A) ¼ f [ C:
df

du
[ C, D

df

du
¼ Lf

� �

: ðA 9Þ

The spectrum s(A) of A coincides with its point spectrum if

and only if it satisfies the corresponding characteristic

equation (3.5). Define C� ¼ C([0,1], R2�) where R
2� is the

two-dimensional space of row vectors. Consider the adjoint

bilinear form on C * � C:

(c,f) ¼ c(0)D(f)ÿ
ð0

ÿ1

ðu

0
c(sÿ u)dh(u)f(s)ds

þ
ð0

1

ðu

0
c0(sÿ u)dz(u)f(s)ds:

ðA 10Þ

Let A� denote the adjoint operator of A with respect to the

bilinear form defined in equation (A 10), i.e., A�:C� ! C�,

so that (c,Af) ¼ (A�c,f) holds for all f[ C and c [ C *.

Let L ¼ fivctc,2ivctcg. There exists two subspace PL and

QL splitting of the space C, invariant under T(t), such that

C ¼ PL

L

QL. A basis F of PL is given by

F ¼ [f1(u) f2(u)], ðA 11Þ

where f1ðuÞ ¼ ðeivctcu; fivceivctcuÞT ¼ f2ðuÞ, and a basisC for

QL can be expressed as

C ¼ c1(j)
c2(j)

� �

, ðA 12Þ

where

c1(j) ¼ keÿivctcj,
1

ieÿivctcAvctc þ eÿivctctcDþ ivctc
keÿivctcj

� �

¼ c2(j)

in which

k ¼ ivctcAþDtc þ ivctceivctc

A(vctc)
2 þ ivctc(2AÿDtc)þ tc(ÿ Ptc þD)þ 2ivctceivctc

,

ðA 13Þ

satisfying (C,F) ¼ I. Also, T(t)F ¼FeBt where

B ¼ ivctc 0
0 ÿivctc

� �

: ðA 14Þ

The infinitesimal generator A can be extended to an operator
~A by

~Af ¼ Afþ X0[LfÿDf0], f0 ¼ df

du
, ðA 15Þ

onto the space BC, which is continuous on [21, 0) and

with a possible finite jump discontinuity at 0. Functions c

in BC can be represented as c ¼ f þ X0b, where f[C,

b [ R
2, and

X0(u) ¼ 0 ÿ1 � u < 0,
I u ¼ 0:

�

ðA 16Þ

The bilinear form (A 10) can be extended to C * � BC by

setting (c,X0) ¼ c(0).

With all these, the NDDE (4.4) can be expressed as the

following abstract ordinary differential equation (ODE):

_xt ¼ ~Axt þ X0F(xt)þ X0G(xt, _xt): ðA 17Þ

Let P: BC ! P be the projection defined as P(f þ X0z) ¼

F[(C,f ) þ C(0)z]. Then BC ¼ P
L

kerP and Q , kerP,

xt ¼Fy(t) þ zt where y(t) [ R
2, zt[Q. Then one can obtain

the following decomposition of the neural system (A 17):

_y ¼ ByþC(0)(F(Fyþ zt)þG(Fyþ zt,F _yþ _zt)) ðA 18Þ

and

_zt ¼ ~Azt þ (IÿP)X0(F(Fyþ zt)þG(Fyþ zt,F _yþ _zt)):

ðA 19Þ

The normal form analysis is based on a recursive

sequence of nonlinear transformations. As the non-resonance

condition relative to L is satisfied, there exists a formal non-

linear transformation such that a local manifold satisfies
~zt ¼ 0 and the normal form on this invariant manifold

yields the following two-dimensional ODE:

_~y1
_~y2

" #

¼ ivctc 0
0 ÿivctc

� �

~y1
~y2

� �

þ D~y21~y2 þ h:o:t:

D~y1~y
2
2 þ h:o:t:

" #

, ðA 20Þ

where D denotes the coefficient of ~y21~y2 and h.o.t. stands for

higher-order terms. According to the computation scheme

proposed in [50], through recursive nonlinear transform-

ations, the third-order normal form can be obtained.

Through the following change of variables:

~y1 ¼
1

2
(r cosfÿ ir sinf) and

~y2 ¼
1

2
(r cosfþ ir sinf) ðA 21Þ

equation (A 20) is transformed into the form:

_r ¼ 1

8
ReDr3 þ h:o:t: ðA 22Þ

The unfolding takes the following form:

_r ¼ Re grmþ 1

8
ReDr3 þ h:o:t:, ðA 23Þ

where g and D are defined in (3.17) and (4.6). The amplitude

formula (4.5) comes as a non-zero trivial solution of (A 23).

A.2. Calculation by the method of multiple scales
To study the small amplitude oscillation, let

w(t) ¼
ffiffiffi

1
p

x(t) and m ¼ 1�m ðA 24Þ

1 is a non-dimensional bookkeeping parameter, 0, 1�1.

�m ¼ O(1) is the detuning parameter. Then equation (4.4) can

be transformed into the form

€x(t)þ A€x(tÿ 1)þ tcD _x(tÿ 1)þ tc
2(Px(tÿ 1)ÿ ax(t))

¼ ÿ1�m(D _x(tÿ 1)ÿ 2tc(Px(tÿ 1)ÿ ax(t)))

þ 1( pgx(t)
3 þ

X

hþjþk¼3

phjkx
h(tÿ 1) _x j(tÿ 1)€xk(tÿ 1)):

ðA 25Þ

The multiple timescales are defined as Tk ¼ 1kt, r ¼ 0, 1, 2, . . ..

To study the Hopf bifurcation, a two-scale expansion of the

solution is assumed as

x(t) ¼ x0(T0,T1)þ 1x1(T0,T1)þO(12): ðA 26Þ
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By using the following differential operators [45]:

d

dt
¼ @

@T0
þ 1

@

@T1
þO(12) ¼: D0 þ 1D1 þO(12),

d2

dt2
¼: D0

2 þ 21D0D1 þO(12),

ðA 27Þ

the delayed terms can be expressed as

x(tÿt)¼x0(T0ÿt,T1ÿ1t)þ1x1(T0ÿt,T1ÿ1t)þ���
¼x0(T0ÿt,T1)þ1(x1(T0ÿt,T1)ÿtD1x0(T0ÿt,T1))

þO(12): ðA28Þ

Substituting equations (A 26), (A 27) and (A 28) into

equation (A 25) and equating the same powers of 1, a set

of linear partial differential equations can be obtained in

the form

D2
0x0ÿat2cx0þPt2cx0tþDtcD0x0tþAD2

0x0t¼0 ðA29Þ

and

D2
0x1ÿat2cx1þPt2cx1tþDtcD0x1tþAD2

0x1t

¼ (2tcx0ÿ2Ptcx0tÿDD0x0t)�mþ (Ptc
2ÿDtc)D1x0t

ÿ2D0D1x0 þAD2
0D1x0tÿ2AD0D1x0tþDtcD0D1x0t

þ p030(D0x0t)
3 þ (p021D

2
0x0tþ p210x0t)(D0x0t)

2

þ (p012(D
2
0x0t)

2þ p111x0tD
2
0x0tþ p210x0t

2)D0x0t

þ p102x0t(D
2
0x0t)

2þ p201x0t
2D2

0x0tþ p300x0t
3

þ p003(D
2
0x0t)

3 þ pgx0
3,

ðA30Þ

where xi ¼ xi(T0, T1), xit ¼ xi(T0 2 t, T1), and pijk, pg are

defined in table 1.

At the stability boundary, only one pair of pure imaginary

characteristic roots +ivc exists, while all other eigenvalues

have negative real parts. All the solution terms related to

these negative real eigenvalues decay with time. Thus, to

study the long-time behaviour of the system, the solution of

equation (eqn A 29) can be assumed as

x1 ¼ R(T1)e
ivctcT0 þ R(T1)e

ÿivctcT0 : ðA 31Þ

Substituting equation (A 31) into equation (A 30), the secular

term can be found:

(ÿ2Ptc ÿ iDvctc þ 2atce
ivctc )R�mþ (3eivctc pg

ÿ 3vc
6tc

6 p003 þ ivc
5tc

5 p012 ÿ vc
4tc

4( p021 ÿ 3 p102)

þ ivc
3tc

3(3 p030 ÿ p111)þ vc
2tc

2( p210 ÿ 3 p201)

þ ivctc p210þ3 p300)R
2�Rÿ tc(ÿPtc þD(1ÿ ivctc)

þ Avc(2iþ vctc)þ 2ieivctcvc) _R ¼ 0: ðA 32Þ

By substituting the parameters in table 1 into (A 32), _R can be

determined by

_R ¼ gR�mþ DR2�R: ðA 33Þ

Having

~y1 ¼
1
ffiffiffi

1
p Reivct, ðA 34Þ

the normal form equation (A 33) is transformed into the same

form as the normal form equation (A 23) derived by using

centre manifold reduction and normal form theory.
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