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Stability of Damped Skateboards
Under Human Control
A simple mechanical model of the skateboard–skater system is analyzed, in which a lin-
ear proportional-derivative (PD) controller with delay is included to mimic the effect of
human control. The equations of motion of the nonholonomic system are derived with the
help of the Gibbs–Appell method. The linear stability analysis of the rectilinear motion is
carried out analytically in closed form. It is shown that how the control gains have to
be varied with respect to the speed of the skateboard in order to stabilize the uniform
motion. The critical reflex delay of the skater is determined as functions of the speed,
position of the skater on the board, and damping of the skateboard suspension
system. Based on these, an explanation is given for the experimentally observed dynamic
behavior of the skateboard–skater system at high speed. [DOI: 10.1115/1.4036482]
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1 Introduction

The first skateboard was invented a century ago to carry surf-
boards to the ocean easier, namely, simple metal wheels were
installed to wooden boards. The present configuration of the
wheel suspension became common later only, by which, the
wheel-pairs turn around their steering axes if the skateboard is
tilted around its longitudinal axis. Due to this mechanism that
provides specific kinematic constraints, the understanding of the
motion of the skateboard is a challenging task. The equations of
motion of the resulted nonholonomic system can be derived by
means of Kane’s method [1], which was applied in the first scien-
tific publication in this area [2]. Hubbard investigated the linear
stability of the skateboard, and he realized the positive effect
of the speed, e.g., the higher the speed is, the more stable the
skateboard is.

The speed-dependent stability of nonholonomic systems still
has unexplored dynamic phenomena although they have been
investigated for more than 100 yr. This is clearly shown by recent
publications, where the lateral stability of the bicycle and the
three-dimensional biped walking machines was studied (see, for
example, Refs. [3] and [4]). For nonholonomic systems, the inves-
tigation of the stability of skateboards was made in the 1990s and
in the new millennium. Nonlinear analysis was carried out [5],
and controlled motions were also investigated [6].

The other interesting challenge in connection with the
skateboard–skater system is to explain the balancing effort of the
skater on the skateboard. There are publications where the human
control was taken into account [7,8], but the reflex delay of the
skater was considered in Refs. [9] and [10] only. Nevertheless,
the importance of the reflex delay has been shown by many papers
for human balancing models from both biological and engineering
points of view [11–15].

In this paper, a mechanical model of the skateboard is con-
structed in which human control is taken into account. A typical
modeling approach is used to present the human control efforts,
namely, the skater’s control adjusts the mass center of his body by
a torque at his ankle. A linear PD controller is applied to the con-
trol loop, in which we also consider the reflex delay. Similar

models were used in Refs. [12] and [15] although some other con-
trol models can present more realistic higher-frequency behavior
(for example, see McRuer’s approach in Ref. [16]).

In order to obtain the equations of motion in the most compact
form that supports the analytical investigation the best, the Appel-
lian approach [17] is used instead of the classical Lagrangian one
[8]. The stability analysis of the rectilinear motion is investigated
via closed form calculations. Criterion is given for the time delay,
meanwhile the effects of the skater’s longitudinal position and the
stiffness/damping parameters of the suspension system are also in
focus.

2 Mechanical Model

The mechanical model in Fig. 1 is based on Ref. [9] but here
the suspension of the board also contains an additional torsional
damper. The model consists of two massless rods connected by a
hinge at point S. One of the rods represents the board between the
points F (front) and R (rear), while the other rod stands for the
skater between the points S and C (center of gravity). The lumped

Fig. 1 Mechanical model of the skateboard–skater system [9];
panel (a) shows the back view of the mechanical model, panel
(b) shows the top one and panel (c) shows the skateboard sus-
pension system
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mass m represents the mass of the skater at the free end of the
vertical rod.

Although the board is assumed massless, the mass moment of
inertia of the board is kept and represented by Jb with respect to
the center of the board. Due to the symmetry of the board, the
inertia around its longitudinal, lateral, and vertical axes are
denoted by J1, J2, and J3, respectively.

The remaining parameters of the model are the following: 2h
denotes the height of the skater, 2l is the length of the board, a
indicates the longitudinal location of the skater on the board
(a> 0 means that the skater stands ahead of the center of the
board), and g stands for the gravitational acceleration.

The loss of contact between the ground and the wheels is not
considered, so the longitudinal axis of the board is always parallel
to the ground. Therefore, five generalized coordinates can
describe the motion uniquely: x and y are the coordinates of point
S; w describes the longitudinal direction of the board, and u and b
are the deflection angles of the skater and the board relative to the
vertical direction, respectively (see Fig. 1).

In order to investigate the skater–board interaction analytically,
the control effort of the skater is taken into account in the simplest
possible way. Accordingly, most of the balancing movements
(like bending the spine, swinging the arms) are neglected except
the ankle torque [2,5–8,10]. This model is widely used for stabil-
ity analysis, since the small body angles in human balancing are
corrected via ankle torque, while the hip or arm motions are used
at large body angles only.

Consequently, the resulting model is analogous to the simplest
human balancing models, which include active (controlled) and
passive (uncontrolled) torques at the ankle [13,14,18–20]. Here,
only the active one is investigated, while the muscle stiffness and
damping originated in the muscle stretching related to the ankle
rotation are neglected. The active torque arises from muscle acti-
vation due to the delayed neuromuscular sensory feedback from
the proprioceptive, vestibular, and visual systems. We take into
account only the last two sensory systems. The vestibular and vis-
ual ones provide information about the absolute body angle (u)
with respect to the vertical direction and the angular velocity ( _u),
the corrective torque according to them is determined in our
model by a linear time-delayed PD controller [12]

MPD ¼ puðt� sÞ þ d _uðt� sÞ (1)

where s refers to the time delay, and p and d represent the propor-
tional and the derivative control gains, respectively.

As one can see in Fig. 1, the free rotation of the board about its
longitudinal axis is obstructed by a torsional spring of stiffness kt

and by a torsional damper of damping coefficient kd beside of the
control torque produced by the skater. These dynamical elements
of the system are originated in the special wheel suspension sys-
tem of the skateboard.

We consider that the wheels of the skateboard roll perfectly for
small steering angles. By means of the geometry of the suspension
system, the direction of the velocities vF and vR of the points F
and R can be expressed in terms of the generalized coordinates
(see Refs. [2] and [7]). Namely, a nonlinear connection arises
between the steering angle dS and deflection angle of the board b
(see Refs. [21] and [22] and further details in Ref. [2] on the func-
tioning of the skateboard’s suspension system)

sin b tan j ¼ tan dS (2)

where j is the constant angle in the suspension system between
the pivot axis and the board as it is shown in Fig. 1(c). Based
on these, two scalar kinematic constraining equations can be
constructed

ðcos w sin b tan j� sin wÞ _xþðsin w sin b tan jþ cos wÞ _y
þ ðl� aÞ _w ¼ 0 (3)

ðcos w sin b tan jþ sin wÞ _xþðsin w sin b tan j� cos wÞ _y
þ ðlþ aÞ _w ¼ 0 (4)

A third kinematic constraint is also introduced in the model: the
prescribed longitudinal speed v of the board is constant in time

_x cos wþ _y sin w ¼ v (5)

It can be proved that the presence of this third kinematic con-
straint does not modify the linear stability of the rectilinear
motion.

3 Mathematical Model

The derivation of the equations of motion can be carried out by
means of the Gibbs–Appell method [17]. This method is efficient
in the sense that it provides the equations in a first-order compact
form. This method requires linear kinematic constraints in
terms of generalized velocities. Since this criterion is satisfied by
Eqs. (3)–(5), the Gibbs–Appell equations can be obtained in the
form of

@A
@ _r i
¼ Ci; i ¼ 1; 2 (6)

where A is the so-called energy of acceleration what is differenti-
ated with respect to the so-called pseudo-acceleration _r i. The
right-hand side is the so-called pseudoforce Ci.

The pseudovelocities ri can be chosen intuitively, by which the
kinematic constraint forces can be eliminated. In our case, two
pseudovelocities are needed since the difference between the
numbers of the generalized coordinates and the kinematic con-
straints is two. An appropriate choice can be the angular velocity
components r1 and r2 of the skater and the skateboard around the
longitudinal axis, respectively,

r1ðtÞ :¼ _uðtÞ and r2ðtÞ :¼ _bðtÞ (7)

This choice is appropriate since the system of equations, which
consists of the kinematic constraining Eqs. (3)–(5) and the defini-
tions (7) of the pseudovelocities, can be solved uniquely for the
generalized velocities

_x

_y

_w

_u

_b

2
666666664

3
777777775
¼

v cos wþ a

l
tan j sin b sin w

� �

v sin w� a

l
tan j sin b cos w

� �

� v

l
tan j sin b

r1

r2

2
66666666666664

3
77777777777775

(8)

The derivation of both sides of this expression with respect to time
leads to the generalized accelerations, as functions of the pseudo-
acceleration, pseudovelocities, and generalized coordinates.

In case of our model, the acceleration energy A reads

A ¼ 1

2
m aC � aC þ

1

2
aTJbaþ aT x� Jbxð Þð Þ þ 1

2
xT Jbxð Þx2

(9)

The first term in this formula refers to the skater modeled with a
lumped mass, while the other terms refer to the board that has
negligible mass but it has finite mass moment of inertia. In
Eq. (9), we have
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aC � aC ¼ 2
v tan j

l2
v sin b l� h tan j sin b sin uð Þ þ alr2 cos bð Þ

� h _r1 cos uþ h2 _r2
1 þ � � � (10)

which are necessary parts of the square of the lumped mass’
acceleration

x
xb;yb;zbð Þ

¼

r2

� v

l
tan j sin2b

� v

l
tan j cos b sin b

2
66664

3
77775

a
xb;yb;zbð Þ

¼

_r2

� v

l
tan j sin 2bð Þr2

� v

l
tan j cos 2bð Þr2

2
66664

3
77775

(11)

are the angular velocity and acceleration of the board given in the
board fixed (xb, yb, zb) coordinate system, respectively, and the
mass moment of inertia matrix of the board is

Jb
ðxb ;yb ;zbÞ

¼
J1 0 0

0 J2 0

0 0 J3

2
4

3
5 (12)

With these, the energy of acceleration can be expressed as

A ¼ hv

l2
m tan j cos u alr2 cos bþ v sin b l� h tan j sin b sin uð Þð Þ _r1

þ v2

l2
tan2j J3 � J2ð Þ sin3b cos b _r2 þ

1

2
mh2 _r2

1 þ
1

2
J1 _r2

2 þ � � �

(13)

where the terms that do not depend on the pseudo-acceleration are
not computed here since they will disappear after derivation in the
Gibbs–Appell equation (6).

The pseudoforce can be determined from the virtual power of
the active forces, which here relates to the torques produced by
the controller and the spring and the damper in the suspension sys-
tem and to the gravitational force

dP ¼ mgh sin udr1 þMPDðdr2 � dr1Þ � ðktbþ kdr2Þdr2 (14)

where notation d refers to virtual quantities.
Thus, based on Eq. (6), the equations of motion assume the

forms

_r1 ¼
g

h
sin u� av

hl
tan jr2 cos b cos u� v2

hl
tan j sin b cos u

þ v2

l2
tan2j sin2b sin u cos u� 1

h2m
dr1 t� sð Þ þ pu t� sð Þð Þ

_r2 ¼
pu t� sð Þ þ dr1 t� sð Þ

J1

� ktbþ kdr2

J1

þ J2 � J3

J1

v2

l2
tan2j sin3b cos b

_u ¼ r1

_b ¼ r2

_x ¼ v cos w� av tan j sin b sin w
l

_y ¼ v sin w� av tan j sin b cos w
l

_w ¼ � v tan j sin b
l

(15)

Note, that x, y, and w are cyclic coordinates, so only the first
four equations of Eq. (15) describe the so-called essential motion;
these are needed for the stability analysis.

4 Stability of the Rectilinear Motion

In this section, the linear stability of the rectilinear motion is
investigated. First, we take the linearized equations of motion
around this stationary solution with respect to small perturbations
in r1, r2, u, and b. This leads to

_XðtÞ ¼ A � XðtÞ þ B � Xðt� sÞ (16)

where

A ¼

0 �av

hl
tan j

g

h
� v2

hl
tan j

0 � kd

J1

0 � kt

J1

1 0 0 0

0 1 0 0

2
6666666664

3
7777777775
;

X tð Þ ¼

r1 tð Þ

r2 tð Þ

u tð Þ

b tð Þ

2
6666664

3
7777775

and B ¼

� 1

mh2
d 0 � 1

mh2
p 0

1

J1

d 0
1

J1

p 0

0 0 0 0

0 0 0 0

2
6666666664

3
7777777775

(17)

Note, that the two principle mass moments of inertia J2 and J3 of the
board have no effect on the dynamics close to the rectilinear motion.

The stability of this linear system can be determined by the real
part of the roots of the corresponding characteristic equation

k2 þ kd

J1

kþ kt

J1

� �
k2 � g

h
þ d

mh2
kþ p

mh2

� �
e�ks

� �

þ v

l

a

h
kþ v

h

� �
tan j

d

J1

kþ p

J1

� �
e�ks ¼ 0 (18)

with characteristic exponent k. Although, a characteristic equation
of a delayed system has infinitely many complex roots [23], the
investigated equilibrium is asymptotically stable if and only if all of
the real parts of these roots are negative. The limit of stability corre-
sponds to the case when the characteristic roots are located on the
imaginary axis for a set of specific values of system parameters.

One can distinguish basically two different types of stability
boundaries. The first relates to the saddle-node (SN) bifurcation,
which occurs when both the real and the imaginary parts of the
characteristic root are zeros; the second refers to Hopf bifurcation,
when the characteristic roots are pure imaginary.

SN bifurcation occurs if kSN¼ 0 satisfies the characteristic
Eq. (18), namely, if

kt

J1

� g

h
þ p

h2m

� �
þ p

J1

v2

hl
tan j ¼ 0 (19)

equation leads to the possibly critical proportional gain pSN

pSN ¼
g

h

kt

v2

hl
tan jþ kt

mh2

(20)
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The critical proportional and differential gains in case of Hopf
bifurcation can be determined by the D-subdivision method. In this
case, the critical characteristic exponent is a pure imaginary num-
ber (kH ¼ 6ix; x 2 Rþ) which can be substituted back into the
characteristic equation. Taking the real and imaginary parts of this
complex equation, the critical control gains can be expressed as

pH ¼ p1

p2 þ p3ð Þcos sxð Þ � p4 sin sxð Þ
p5 þ l 2p2 þ p3ð Þ (21)

dH ¼ p1

p2 þ p3ð Þsin sxð Þ þ p4 cos sxð Þ
x p5 þ l 2p2 þ p3ð Þð Þ (22)

where

p1 ¼ mlhðgþ hx2Þ
p2 ¼ mhv tan jðx2ðakd � J1vÞ þ ktvÞ
p3 ¼ lððkt � J1x

2Þ2 þ k2
dx

2Þ
p4 ¼ mhv tan jðaJ1x

2 � akt þ kdvÞx
p5 ¼ ðmhv tan jÞ2ða2x2 þ v2Þ

(23)

Based on the stability boundaries given in Eqs. (20)–(22), a lin-
ear stability chart of the rectilinear motion can be constructed.
The SN bifurcation is represented with a vertical line in the p–d
parameter plane (see any panel of Fig. 2). Only control gains from
the right-hand side of this SN bifurcation line can correspond to
stable rectilinear motion.

The Hopf bifurcation curve, also called dynamical stability
boundary is more complicated. It starts like the stability boundary

in case of the PD-controlled inverted pendulum (see in Refs. [12]
and [15]), but before it spirals outward uniformly, it forms an
enclosed loop, which contains the origin (p¼ 0, d¼ 0). In a spe-
cial case, when the damping of the skateboard (kd) is zero, this sta-
bility boundary goes throw the origin (see details in Ref. [9]). The
loop of the dynamic stability boundary has a major effect on the
structure of the stable domain in the p–d plane, namely, it can be
proved that only the inner part of this loop can be stable.

One can observe in Fig. 2 that the possibly stable closed loop
rotates counterclockwise around the origin as the time delay
increases, which implies that the stable domain can vanish and
reappear as the delay varies. The panels of Fig. 2 also show the
effect of the damping coefficient kd in the suspension system,
which increases from top to bottom. One can observe that the
higher the damping coefficient is, the larger the closed loop is. In
cases when the closed loop bounds the actual stable regime, the
rectilinear motion can loose its stability with higher frequencies,
corresponding to the board’s natural frequency. This vibration fre-
quency is high at low damping coefficients due to the relatively
small mass moment of inertia of the board J1.

5 Critical Reflex Delay

The effect of the time delay s is intricate. It can only be investi-
gated numerically, but before the presentation of this, we are
going to give a sufficient condition for the delay. This condition
can be developed by the examination of the starting point of the
Hopf stability boundary curve. This always starts on the SN line,
but if it goes to the left-hand side first, then, the stable domain
cannot exist. This leads to the ultimate critical time delay scr,u,
practically, if the reflex delay of the skater is larger than this
value, the investigated equilibrium is unstable. The sufficient con-
dition can be determined as

d2pH

dx2

����
x¼0

> 0 (24)

since the first derivative at x¼ 0 is still zero. The condition can
be formed as a second-order inequality in terms of the delay

� t2

t1

s2 þ t3

t2
1

sþ t4
t31
> 0 (25)

where

t1 ¼ hmv2l tan jþ kt

t2 ¼ mghlkt

t3 ¼ 2gh2lm2v tan jðakt � kdvÞ
t4 ¼ 2h2lmðgmv2 tan jðhmv tan jðakd � J1vÞ þ k2

dlÞ
þ mv tan jðhmv tan jðhv2 � a2gÞ � glðakd þ J1vÞÞkt

þ 2hlmv2 tan jk2
t þ l2k3

t Þ

(26)

Without further mathematical investigations, we plot the ultimate
critical delay (see Fig. 3) using the realistic numerical values of
Table 1. In Fig. 3, the continuous and dashed lines refer to the
cases when the skater stands ahead (a¼ 0.1 m) and behind
(a¼�0.1 m) the center of the board, respectively.

Although the ultimate critical time delay can be expressed ana-
lytically from Eq. (25), the arising expressions are complex. At
zero and infinite longitudinal speeds, the critical time delay is
independent from the standing position a

sv!0
cr;u ¼

ffiffiffi
2
p

xs

sv!1
cr;u ¼ � 2fb

xb

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2fb

xb

� �2

þ 2
1

x2
b

þ 1

x2
s

� �s (27)Fig. 2 Qualitative structure of the stability charts in the p–d
plane, where the shaded domains indicate the stable regimes.
The time delay s increases from left to right, and the damping
coefficient kd increases from top to bottom.
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where fb and xb are the damping ratio and the natural angular fre-
quency of the skateboard, respectively. The notation xs refers to
the natural angular frequency of the pendulum of length h. These
parameters can be formulated as

fb ¼
1

2xb

kd

J1

; xb ¼
ffiffiffiffiffi
kt

J1

r
; and xs ¼

ffiffiffi
g

h

r
(28)

Note, that the ultimate reflex time at zero speed sv!0
cr;u is identical

with the critical time delay for simple human balancing [12]. The
ultimate time delay at infinitely high speed is slightly greater than

the standing one. The difference is small if the relative damping
ratio (fb) is small, and the natural angular frequency of the board
is much higher than the skater’s one (xb�xs).

Besides these analytical results, the critical time delay can be
determined numerically. The existence of the stable regime in
Fig. 4 was determined in the plane of the longitudinal speed and
the time delay with the help of the semidiscretization method
[24]. In the shaded domains, there exists sufficient p, d control
gains, for which the rectilinear motion is stable. The continuous
lines refer to the real stabilizability boundaries, while the dashed
lines stand for the analytically determined ultimate critical time
delay. As the boundary of the ultimate critical time delay depends
on the position of the skater, the stability boundaries also do.
Thus, in the upper panels, stabilizability charts belong to the case
where the skater stands behind the center of the board (a¼�0.1
m), while in the lower panels one can find the standing ahead case
(a¼ 0.1 m).

One can observe in Fig. 4, that the ultimate critical time delay
does not give a necessary and sufficient condition for the exis-
tence of stable rectilinear motion. The shaded domains are always
below the ultimate value. Moreover, at low damping ratio, fb,
there are time delay ranges, for which the rectilinear motion is
unstable. At high damping ratio, these unstable ranges disappear,
and the critical time delay can be approximated by the analytically
determined ultimate time delay well.

6 Required Control Gains

The existence of stable control gains does not ensure stability
automatically; appropriate selection of the gains is necessary. In
Fig. 5, stable control gain domains are plotted for several longitu-
dinal speeds, v, and damping ratios, fb, using the parameters of
Table 1. The stable domains are shaded for the damping
ratio fb¼ 0.36. The arising closed loop cuts off some domains, at
sufficiently small damping ratios, from the possibly stable regular
D-shaped stability boundary. The higher the damping ratio is, the
larger the stable domain is, as it was expected from the structure
of the Hopf stability boundary curves. However, extremely large
damping ratio cannot increase the stable domain further, while it
may provide more difficult handling of the skateboard, i.e., it

Table 1 Parameters of the skater–board system

h (m) m (kg) a (m) s (s)
0.85 75 6 0.1 0.24

kt (N�m/rad) l (m) j (deg) J1 (kg m2)
100 0.3937 63 6.642� 10�3

Fig. 4 Effect of the longitudinal speed and the damping ratio on the critical time delay; continuous lines stand for stability
boundaries, dashed lines do for ultimate critical time delay, and the shaded domain indicates p–d stabilizable domains, while
the white domains are unstable. The upper row belongs to the standing behind and the row below belongs to the standing
ahead.

Fig. 3 Effect of the longitudinal speed on the ultimate time
delay; continuous line refers to the fore standing (a 5 0.1 m),
while the dashed line refers to the back standing (a 5 20.1 m)
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requires larger control effort to tilt the board and make cornering
maneuvers.

The speed has basically two different effects on the stable
domain in the p, d parameter plane; as the speed changes, the
location and the size of the stable regimes also change. Thus, the
skater’s proportional and differential gains must be tuned as the
longitudinal speed varies; this effect makes skateboarding even
more challenging.

The reduction of the stable parameter domain can explain the
loss of stability at high speeds although one can observe more sta-
bilizable domains (v, s) in Fig. 4 at higher speeds. Namely, the
higher the speed is, the smaller the domain of the appropriate p, d
control gains is. This makes the sensitivity for the control gains
greater. The area of the stable domain is illustrated in Fig. 6 rela-
tive to the area of the stable domain at zero speed. If the area of
the stable domain is zero, the rectilinear motion cannot be stabi-
lized by linear PD controller with the time delay s¼ 0.24 s. These
domains belong to an unstable regime of the corresponding panel
in Fig. 4.

7 Conclusion

A mechanical model of the skateboard–skater system was con-
structed, in which the effect of the human balancing was taken
into account by a linear delayed PD controller. The linear stability
of the rectilinear motion of the skateboard was analyzed, and sta-
bility charts were composed with special attention to the effects of
the reflex time and the longitudinal speed apart from the effect of
the damping coefficient of the skateboard suspension system.

An upper limit was given for the critical time delay, which
approximate the necessary and sufficient stability condition for
the time delay well at relatively high damping ratio. The sensitiv-
ity of the system with respect to the longitudinal position of the
skater was also shown. The advantages of the fore standing are
clear at high damping ratios and especially at low speeds. But, at
low damping ratios, the skater also has opportunity to make the
system stabilizable by means of the variation of the longitudinal
position on the board. For example, the variation of the time delay
due to the modified concentration level of the skater can be bal-
anced by the appropriately chosen position of the skater.

The presented model can also explain the loss of stability at high
speeds. Although, appropriate control gains exist at high speeds by
which the rectilinear motion is stable, stability is not guaranteed,
because the chance of choosing satisfactory control gains is smaller
for higher speeds. The sensitivity with respect to the control gains is
large; small error in the chosen control gains can lead to loss of sta-
bility. There is another issue that makes skateboarding at high speed
difficult. Namely, small control gains can be applied only, which
results close to zero torque, and this enlarges the effect of the dead-
zones of the human control system. In case of human stick balanc-
ing, these effects are identified in Ref. [15] as the sources of micro-
chaotic and transient-chaotic vibrations around linearly unstable
equilibrium with large surviving times.
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