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We show that an unstable scalar dynamical system with time-delayed feedback can be stabilized
by quantizing the feedback. The discrete time model corresponds to a previously unrecognized
case of the microchaotic map in which the fixed point is both locally and globally repelling. In
the continuous-time model, stabilization by quantization is possible when the fixed point in the
absence of feedback is an unstable node, and in the presence of feedback it is an unstable focus
(spiral). The results are illustrated with numerical simulation of the unstable Hayes equation.
The solutions of the quantized Hayes equation take the form of oscillations in which the am-
plitude is a function of the size of the quantization step. If the quantization step is sufficiently
small, the amplitude of the oscillations can be small enough to practically approximate the
dynamics around a stable fixed point.
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Digital feedback controllers are having an increas-
ing impact on human activities. Examples range
from the control of single-atom trajectories?

to the development of brain-device interfaces? ,
from the treatment of human diseases using
closed-loop drug delivery systems? , to the de-
sign of driverless automobiles? . An important
component of these controllers is an analog-to-
digital (A/D) conversion by which a continuous
(or analog) signal is converted into a series of
numbers proportional to the signal. This A/D
conversion is essential to enable the digital mi-
croprocessors to track the controlled variable: the
reverse D/A conversion makes it possible for the
microprocessor to affect control. The effect of
A/D and D/A conversion is to introduce a quan-
tization into both the time domain (“sampling”)
and the controlling force (“round off”). Although
it is well known that these quantizations can in-
troduce spurious oscillations? ? and small am-
plitude micro-chaotic fluctuations into the con-
trol dynamics? ? , less is known about the pos-
sible benefits of feedback quantization for con-
trol. Here we analyze a generic scalar model
for feedback control and show that a “coarse-
grained” signal quantization can contribute to the
stabilization of unstable dynamical systems in the
presence of feedback delays.

I. INTRODUCTION

The advantages of digital feedback control over contin-
uous, or analog, control are well documented? ? . Dig-
ital controllers are cheaper, easier to configure, more
adaptable and less prone to the effects of environmen-
tal fluctuations. However, the dynamics which arise in
the setting of digital control can sometimes be counter-
intuitive. Examples include the appearance of an oscilla-
tion whose frequency is within a range far smaller than
the sampling frequency and the appearance of low am-
plitude stochastic-like fluctuations in the desired motion,
referred to as microchaos? ? . Even more paradoxical is
the prediction that transiently stable solutions can oc-
cur for parameter ranges that for analog feedback would
be unstable? ? . These quantization effects may not be
unique to man-made devices. The conversion of sensory
inputs into a train of discrete action potentials underlies
sensory-motor encoding in the nervous system. Quanti-
zation of voluntary movements are manifested in the vi-
sually guided movements in infants? and in patients with
brain injury? . Moreover, sensory dead zones, namely a
range of inputs which give the same output, arise both
in neural control? and in A/D conversion? ? and result
in the appearance of limit cycle oscillations.

This communication focuses on the observation that
certain unstable time-delayed dynamical systems can be
practically stabilized by round off. Our discussion is or-
ganized as follows. In Section II, we review the effects
of feedback digitization on the dynamics of time delayed
feedback control from the perspective of a discrete time
map referred to as the microchaos map. Our focus is
on the stable dynamics which arise when the fixed-point
is locally unstable (repelling). Section III demonstrates
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that the stable dynamics that arise when this fixed point
is globally attracting include limit cycle oscillations and
microchaos. Surprisingly, stable and metastable oscilla-
tory dynamics can also arise if this fixed point in the
presence of continuous feedback is, in addition, globally
repelling. Section IV shows an application of these ob-
servation for stabilizing the Hayes equation? for delayed
feedback control using quantization. Since the ampli-
tude of the fluctuations is proportional to the size of the
quantization step, it becomes possible to replace the dy-
namics around an unstable fixed point with stable, low
amplitude fluctuations. This result may be sufficient for
many practical applications.

II. DIGITAL FEEDBACK

Consider the dynamics of an over-damped unstable
system described by

ẋ(t) = qx(t) − f(x(t)) , (1)

where x is a state variable, q > 0 is a constant and f
describes the feedback. There are two effects of a digital
implementation of (1). First, the fact that f is deter-
mined from the sampled values of x introduces a tempo-
ral piecewise smooth dynamics? ? governed by

ẋ(t) = qx(t) − f(x(tj)) , t ∈ [tj , tj+1) , (2)

where tj = j∆t, j = 0, 1, 2, . . . are the sampling instants
and ∆t is the constant sampling time. Temporal sam-
pling introduces a delay in the system, hence Eq. (2) can
also be written as

ẋ(t) = qx(t)− f(x(t− ρ(t))) , (3)

where

ρ(t) = t−∆t Int

(

t

∆t

)

(4)

is a time-periodic delay, and the function Int() rounds
towards zero. The average delay, ρ̄, is

ρ̄ =
1

∆t

∫ ∆t

0

ρ(t) dt =
∆t

2
. (5)

Second, the quantization round off of f means that the
feedback forces are computed using integer multiples of
the quantization step, h, and hence

f(x(tj)) = ph Int

(

x(tj)

h

)

, (6)

where we have assumed linear state feedback with control
gain p. In making the above approximations, we assume
a zero-order hold, namely the force is kept constant over
the interval ∆t. A consequence of this assumption is
that despite the periodically varying delay, the delayed
feedback becomes a piecewise constant function.

III. DISCRETE TIME: MICROCHAOTIC MAP

Equation (3) with (4) and (6) leads to the governing
equation

ẋ(t) = qx(t) − ph Int

(

1

h
x

(

t−∆t Int

(

1

∆t
t

)))

(7)

in continuous-time representation. The internal Int func-
tion refers to discretization in time, the external Int func-
tion represents quantization in space. Discretization in
time is a linear effect that increases the dimension of the
state space due to the inherent delay; quantization in
space makes the problem strongly nonlinear.
Equation (2) with (6) gives an equivalent semi-discrete

form

ẋ(t) = qx(t) − ph Int

(

x(tj)

h

)

, t ∈ [tj , tj+1) . (8)

This equation can be solved over the interval [tj , tj+1) to
give the discrete governing equation in the form of the
microchaos map?

x(tj+1) = ax(tj)− bh Int

(

x(tj)

h

)

, (9)

where

a = exp(q∆t) > 1, b =
p

q
(1 − exp(q∆t)) . (10)

The dynamics of (9) arise from the interplay between
behaviors close to the trivial fixed point x ≡ 0 and those
global to it. The local dynamics, when |x| < h, is gov-
erned by

x(tj+1) = ax(tj) . (11)

Since a > 1, the trivial fixed point is always locally
“cyclic fold” unstable. The phrase “cyclic fold” means
that the changes in x occur monotonically. When |x| ≫

h, then bh Int
(

x(tj)
h

)

≈ bx(tj) and hence the global dy-

namics are governed by

x(tj+1) = (a− b)x(tj) . (12)

With respect to the global dynamics, four different cases
(labeled respectively, A, B, C and D) can be distinguished
depending on the relation between a and b. Local and
global behavior of the different cases are illustrated in
Figure 1. Different regions in the parameter plane (a, b)
are shown in Figure 2.
In what follows, we show that three out of the four

cases, namely, Cases B, C and D, present microchaos.
The three conditions for chaos we use here are? : (1)
sensitive dependence on the initial conditions; (2) exis-
tence of closed invariant attractive sets; and (3) topologi-
cal transitivity (mixing). First, the sensitive dependence
on the initial conditions follows directly from the posi-
tiveness of the Lyapunov exponent Λ = ln(a) > 0 for
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FIG. 1. Cobweb diagrams for (9) with h = 1 when a = 1.8 and
(a,b) b = 0.4, (c,d) b = 1.4, (e,f) b = 2.4, (g,h) b = 3.4. The
red and blue lines shows different solutions associated with
two different choices of the initial conditions denoted by red
and blue dots, respectively. The thick black lines represent the
right-hand side of (9). Left panels represent global dynamics,
while right panels illustrate the dynamics closer to the trivial
fixed point.

all of the cases. Second, closed invariant attractive sets,
which confine chaotic motions, are obtained. Third, the
mixing property is not proven here, but we conjecture
that existing methods based on the construction of an
appropriate symbolic dynamics? ? can be extended to
establish topological transitivity of these maps.

FIG. 2. Steady state behavior of (9). Yellow-red color code
indicates the expected survival time (ST) determined via a
series of numerical simulations. Parameter regions for Cases
A, B, C and D are separated by thick lines, while individual
sub regions associated with different size of domains of attrac-
tions are indicated by thin lines. The dashed line is b = 3a
(see text for discussion).

A. Case A: a− b > 1

The trivial fixed point is globally cyclic fold repelling
(see Figure 1a). Since this case admits no sustained so-
lution we do not consider it further.

B. Case B: 0 < a− b < 1

This case has been analyzed previously by Haller and
Stepan? . The neighborhood of the trivial fixed point
is globally cyclic fold attracting (Figure 1c). Note that
for sufficiently large xj (“large scale”) the values of the
iterates decrease (Figure 1c). However since the fixed
point x ≡ 0 is unstable, the dynamics increase for small
xj (“small scale”) (Figure 1d). For certain parameter
combinations it can be proved that the dynamics are
microchaotic? . However, the numerical results in Fig-
ure 2 suggest that microchaotic solutions exist at each
point of the parameter region 0 < a− b < 1. The closed
invariant attractive set confining microchaotic solutions
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is

AB+ = [n(a− b)h, (m(a− b) + a)h], (13)

for positive initial conditions? and

AB− = [−(m(a− b) + a)h,−n(a− b)h], (14)

for negative initial conditions, where

n = floor

(

b

(b+ 1− a)a

)

, m = ceil

(

(a− 1)a− b

(b+ 1− a)a

)

.

Note that the size of the invariant attractive set is scaled
to the quantization step h. That is, for small quan-
tization step, the amplitude of the chaotic motions is
small. The fact that the chaotic dynamics are confined
to a small region near the trivial fixed point justifies the
term microchaos. The domain of attraction of AB+ is
DB+ = (0,∞), while the domain of attraction of AB− is
DB− = (−∞, 0)? .

C. Case C: −1 < a− b < 0

The neighborhood of the trivial fixed point is globally
period doubling attracting (Figure 1e). The phrase “pe-
riod doubling” means that the changes in x occur with
alternating sign. Although this particular case has not
been analyzed previously, numerical simulations indicate
that these solutions are microchaotic. The closed invari-
ant attractive set for Case C is

AC1 = [−ah, ah]\[(a2 − b)h, (b− a2)h], (15)

when b > a2 (see region C1 in Figure 2) and

AC2 = [−ah, ah], (16)

when b ≤ a2 (see region C2 in Figure 2). For details
on the calculation of AC1 and AC2, see Appendix A.
Similarly to Case B, the size of the invariant attractive set
has been scaled to the quantization step h. The domain
of attraction of AC1 and AC2 is DC = (−∞,∞).

D. Case D: a− b < −1

The neighborhood of the trivial fixed point is globally
period doubling repelling (Figure 1g). This case has not
been studied previously. Despite the fact that the fixed
point is both locally and globally repelling, it is possible
that a stable microchaotic solution exists (Figure 1h).
Numerical simulations show that the regions D11, D12,
D13, D21, D22 etc. in Figure 2 are associated with per-
manent chaos. The boundaries of these parameter do-
mains and the corresponding closed invariant attractive

sets can be given as

D11 : 1 < a < 2 and 2a < b < a+ 2,

AD11 = [(a− b)h, (b− a)h]

\[(a(b− a)− b)h, (b− a(b− a))h], (17)

D12 : 1 < a < 2 and a2 < b < 2a and a+ 1 < b,

AD12 = [−ah, ah]\[(a2 − b)h, (b− a2)h], (18)

D13 : 1 < a < 2 and a+ 1 < b < a2,

AD13 = [−ah, ah], (19)

D21 : 2 < a < 3 and 3
2a < b < a+ 3

2 ,

AD21 = [2(a− b)h, 2(b− a)h], (20)

D22 : 2 < a < 3 and a+ 1 < b < 3
2a,

AD22 = [−ah, ah], (21)

D31 : 3 < a < 4 and 4
3a < b < a+ 4

3

AD31 = [3(a− b)h, 3(b− a)h], (22)

D32 : 3 < a < 4 and a+ 1 < b < 4
3a,

AD32 = [−ah, ah], (23)

. . .

(see Appendix A for details). Similar to Cases B and
C, the size of the invariant attractive set is scaled to the
quantization step h. As opposed to Cases B and C, the
domain of attraction of the above attractive sets is not
infinite, since the global dynamics (for large |x|) in Case
D is repelling. This means that for small quantization
step, the solution may easily escape from the invariant
attractive set due to large enough disturbances or do not
even get inside this set if the initial condition is large
enough (see the solutions in Figure 1c,e,g for Cases B, C
and D).

E. Transient microchaos

In contrast to Cases B and C, transient microchaotic
dynamics can also arise in Case D. The term “transient
microchaos” refers to metastable solutions that tran-
siently survive close to the trivial equilibrium before di-
verging towards infinity? ? . These transient solutions
exist just above the regions D11, D21, D31, etc. and
below the line b = 3a indicated by dashed line in Fig-
ure 2. Transient microchaotic dynamics can be charac-
terized by the first passage or survival time (ST), namely,
the time at which |x| first exceeds a certain value, xlim.
An added complexity is the fact that the ST is sensitive
to the choice of initial condition (see Figure 3). In gen-
eral, the expected value of the ST cannot be determined
analytically except for special cases (see Appendix B for
the determination of the ST for point Q in Figure 2).
In view of the above considerations, the ST in Figure 2

were determined numerically as follows. Time history for
a series of pairs (a, b) was determined numerically for 20
different initial conditions distributed uniformly in the
interval [−h, h] with h = 1 for tmax = 100 iteration steps
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FIG. 3. Cobweb diagrams for Case D with h = 1 associated
with point P (a = 2.5, b = 4.5) in Figure 2 with different
initial conditions x(t0).

and the time instant where |x| first exceeded xlim = 100
was recorded and averaged. The color code indicates the
averaged ST: yellow indicates ST= 0 and red indicates
ST= tmax.
It is observed that the ST in the region associated with

Case A is close to zero as expected, since both the open-
loop and the closed loop system is unstable. The regions
of Case B and Case C are both associated with red color.
The ST in these regions is tmax = 100, which reflects
the existence of long-lived bounded motions, namely, a
permanent microchaos as shown in Figures 1d and 1f,
respectively. For Case D there are choices of (a, b) which
are associated with long-lived bounded microchaos (red)
as well as parameter choices with transient solutions (red-
yellow scale).

IV. QUANTIZATION: HAYES EQUATION

We anticipate that the behaviors exhibited by Case D
will have their counterpart in continuous time-delayed
feedback control systems. Of particular interest is the
possibility of stabilization through quantization of the
feedback. To explore this possibility we consider the
Hayes equation?

ẋ(t) = qx(t)− px(t− T ), (24)

where q > 0 is the system parameter, p is the control
gain and T is the feedback delay. By rescaling time as
t̃ := qt and dropping the tilde immediately we get

ẋ(t) = x(t)− Cx(t− τ). (25)
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FIG. 4. Regions of steady state behaviors of equations (25)
and (27) when h = 1. Solid lines indicate the stability bound-
aries for the Hayes equation (25). Yellow-red color code indi-
cates the expected survival time (ST) for the quantized Hayes
equation (25). The • indicates the point C = 3, τ = 0.5 dis-
cussed in Figure 5.

where τ = T/q is the scaled feedback delay and C =
p/q > 0 is the scaled feedback gain. Biological appli-
cations of the Hayes equation arise in the description of
the control of blood cell dynamics? ? and the pupil light
reflex? . When C = 0, the fixed point x ≡ 0 is an unsta-
ble node. When τ and C are sufficiently large stability is
lost and we have an unstable spiral point. The stability
boundaries of (25) in the plane (C, τ) are given by the
line C = 1 and the parametric curve

C =
√

ω2 + 1, τ =
1

ω
atan(ω) (26)

with ω ∈ [0,∞). Quantization of (25) yields

ẋ(t) = x(t)− ChInt

(

x(t− τ)

h

)

, (27)

where h is the quantization step. When |x| ≫ h, then

Ch Int
(

x(t−τ)
h

)

≈ Cx(t − τ) and hence the global dy-

namics are still governed by (25). Alternatively, one can
write (27) in the form

ẋ(t) =















































. . .

x(t) − 2Ch if 2h ≤ x(t− τ) < 3h,

x(t) − Ch if h ≤ x(t− τ) < 2h,

x(t) if − h < x(t− τ) < h,

x(t) + Ch if − 2h < x(t− τ) ≤ −h,

x(t) + 2Ch if − 3h < x(t− τ) ≤ −2h,

. . .

Figure 4 summarizes the behavior of (27) as a function
of C and τ when h = 1. The semi-discretization numer-
ical method was used to get the time history of the sys-
tems for different pairs of (C, τ) over the period [0, tmax]
with tmax = 100. The initial condition for the simula-
tions was x(θ) ≡ xIC, θ ∈ [−τ, 0], where xIC is a constant



6

−2

0

2

x

h=1

−2

0

2

x

h=0.5

−2

0

2

x

h=0.1

−2

0

2

x

h=0.05

0 5 10 15 20
−2

0

2

x

time [s]

h=0.01

FIG. 5. Effect of quantization step size, h, on the solutions
of (27) when xIC = 0.01, C = 3, τ = 0.5.

chosen such that xIC ≤ h. Solutions were declared to
diverge if |x(t)| ≥ xlim = 100 was satisfied. Yellow-red
color code indicates the ST, i.e., the time when |x(t)| ex-
ceeded xlim. It can be seen that bounded motions exists
in the region where the Hayes equation (25) is unstable.
Figure 5 shows the effects of changing h on the solu-

tions of (27) when the parameters C, τ are chosen so that
the fixed point of (25) is unstable (see • in Figure 4). As
can be seen the amplitude of the oscillations can be re-
duced by decreasing h. However, for cases when h < xIC,
the solution gets out of the domain of attraction and its
amplitude grows exponentially. Thus, there is a trade-
off between h and xIC (or between h and the noise in
the system). Decreasing h may provide a solution which
is a useful approximation for a stabilized fixed point for
practical purposes (see the case h = 0.05 in Figure 5),
however, further decrease of h may destabilize the sys-
tem.

V. DISCUSSION

Here we have investigated the potential for “coarse
grained” quantized feedback to stabilize an unstable feed-
back control system. We have shown that even when the
fixed point is both locally and globally unstable feed-
back quantization can produce a long-lived bounded so-
lution. This stabilized solution takes the form of an
oscillatory fluctuation whose amplitude is proportional
to the quantization step h. We did not directly ad-
dress whether the combination of feedback quantization
and time discretization could generate microchaotic so-

lutions as proven for the closely related Eurich-Milton
equation? .

One way that quantization can enter into the dynam-
ics of time delayed feedback control is because of the
presence of a sensory dead zones. For example, for stick
balancing on the fingertip, there is a sensory dead zone of
1− 3◦ for the detection of vertical displacement angle in
the anterior-posterior direction? . Our observations sug-
gests that the presence of this dead zone may not simply
be a limitation for control, but could be beneficial.

For the discrete-time system (9), the regions near the
trivial fixed point where bounded solutions exist is lo-
cated at higher gain values when b > a + 1, while the
system is unstable when b < a − 1 (see Figure 2). Sim-
ilarly, for the quantized Hayes equation (27), bounded
solutions exist at higher gain values when C is larger
than the stability boundary of the Hayes equation (25),
while the system is unstable when C < 1 (see Figure 4).
This shows that the beneficial effect of quantization can
be utilized when the controller is tuned to “overreact” to
the changes in the state variable.

Time discretization necessarily introduces a time delay
into the dynamical system. This is because the state of
the dynamical system at time t ∈ [tj , tj+1], tj = j∆t de-
pends on its state at time tj , where ∆t is the discretiza-
tion step. Practical experience suggests that since the
time discretization step can be made very small, it can
be ignored; however, this is not always true? . A major
exception occurs when the feedback itself is time-delayed
and quantized? ? . Historically the effect of piecewise
constant, time-delayed feedback was extensively stud-
ied in early investigations into the dynamics of time-
delayed feedback control? ? ? ? ? ? ? . Since experimen-
tal paradigms could be readily developed, it was possible
to directly compare prediction with observation? ? ? ? .
It is important to note that in these models the feedback
switching times could be precisely computed analytically
and thus the solutions were obtained by piecing together
exponential segments or spiral arcs. The use of numer-
ical algorithms, such as the Euler-discretization, semi-
discretization or Runga-Kutta method introduces a low
amplitude, microchaotic element to the dynamics? . A
related situation likely occurs in the use of computer al-
gorithms to simulate the dynamics of integrate-and-fire
neurons? ? ? , although in this case a formal demonstra-
tion that the dynamics are microchaotic has not yet been
made.

Quantizing feedback is expected to be an effective sta-
bilization strategy provided that 1) the fixed point of the
uncontrolled dynamical system is exponentially unstable,
2) the fixed point in the presence of continuous delayed
feedback is an unstable spiral point, and 3) the noise in-
tensity is not too high. A consequence of time-delayed,
quantized feedback is that a both open-loop and closed-
loop unstable fixed point is replaced by a stable oscilla-
tion. If, in addition, there is time discretization, then
the oscillations will be replaced by a microchaotic fluctu-
ation. If the amplitude of the generated oscillation is not
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too large then the solution may be acceptable for certain
applications. Indeed, the long lived balanced state ob-
tained by experts who balance a stick on their fingertip is
a transient microchaotic solution? . Another application
of these results is that the control gain can be increased
by increasing the size of the quantization step, which can
be a useful feature for instance in position control in the
presence of dry friction.
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Appendix A: Closed invariant sets for Cases B, C and D

The closed invariant attractive sets are the sets of min-
imum size, where the solutions never escape from. These
sets are determined by the parameters a and b and the
quantization step h.
The closed invariant attractive sets for Case B, when

0 < a− b < 1, were given by Haller and Stepan? .
For Case C, when −1 < a − b < 0, there are two

different cases. If a2 − b > 0, then then it is easy to see
that the solutions never leaves the set AC2 given in (16),
see panel C2 in Figure 6. However, when a2−b < 0, then
the solutions never return to the set [(a2 − b)h, (b− a2)h]
once they leaved it, hence the invariant attractive set is
AC1 given in (15), see panel C1 in Figure 6.
For Case D, when a − b < −1, there are several sub-

cases. Consider first the case when 1 < a < 2. If a > b−a
and a2 − b > 0, then the invariant set is AD13 given
by (19), see panel D13 in Figure 6. If a > b − a but
a2 − b < 0, then the solutions never return to the set
[(a2−b)h, (b−a2)h] once they leaved it, hence the invari-
ant set is AD12 given by (18). If a < b − a, then upper
bound of the invariant set becomes b − a, the solutions
never return to the set [(a(b− a)− b)h, (b− (a(b− a)))h]
once they leaved it, hence the invariant set is AD11 given
by (17).
Consider now the case when 2 < a < 3. If a > 2(b−a),

then the invariant set is AD22 given by (21), see panel
D22 in Figure 6. If a < 2(b − a), then the invariant set
is AD21 given by (20), see panel D21 in Figure 6.
The invariant sets for the cases when a > 3 can be

obtained similarly.

Appendix B: Survival time calculation

The survival time (ST) for (9) with a = 2 and b = 5
is calculated. This parameter combination corresponds

to point Q in Figure 2. Without loss of generality, the
quantization step can be set to h = 1.
First, we determine the expected ST for the interval

I0 = [−2, 2], i.e., the average time duration until the
solutions initiated from the interval I0 stay in I0. For
this calculation, I0 is divided into subintervals, where
the ST is invariant. It is easy to see, for instance, that
a solution escapes from the interval I0 after one step of
iteration if x(t0) ∈ I1, where

I1 = [−1.5,−1) ∪ (1, 1.5]. (B1)

The solutions escape after two iterations if x(t0) ∈ I2,
where

I2 = [−2,−1.75)∪ [−1,−0.5)∪ (0.5, 1] ∪ (1.75, 2] (B2)

is the pre-image of I1. The solution escapes after three
iterations if x(t0) ∈ I3, where

I3 = [−1.625,−1.5)∪ [−1,−0.875)∪ [−0.375,−0.25)

∪ (0.25,−0.375]∪ (0.875, 1]∪ (1.5, 1.625] (B3)

is the pre-image of I2. By continuing the pre-image map-
ping, an infinite series of subintervals Ik, k = 1, 2, . . . is
obtained, each associated with a ST equal to k (see Fig-
ure 7). The length of the subintervals are

ℓ(Ik) =
2k

2k
k = 1, 2, . . . . (B4)

The length of the union of these subintervals is

∞
∑

k=1

ℓ (Ik) =

∞
∑

k=1

2k

2k
=

∞
∑

k=1

k

(

1

2

)k−1

, (B5)

which can be calculated as follows. Introduce the func-
tion

f(q) :=

∞
∑

k=1

qk =
q

1− q
, (B6)

where 0 < q < 1. The derivative of f with respect to q is

f ′(q) =

∞
∑

k=1

kqk−1 =
(1 − q) + q

(1 − q)2
=

1

(1− q)2
. (B7)

The infinite sum in (B5) can be given by setting q = 1/2
in (B7) as

∞
∑

k=1

ℓ (Ik) = f ′(12 ) =
1

(

1− 1
2

)2 = 4. (B8)

Thus, the union of the subintervals I1, I2, . . . covers the
whole interval I0.
The average ST for I0 can be given as

STI0 =
1

ℓ(I0)

∞
∑

k=1

k
2k

2k
=

1

ℓ(I0)

∞
∑

k=1

k2
(

1

2

)k−1

. (B9)
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FIG. 6. Illustration of the invariant sets for different cases.

Now introduce the function

g(q) :=

∞
∑

k=1

kqk = q

∞
∑

k=1

kqk−1 = qf ′(q) =
q

(1− q)2
,

(B10)
where 0 < q < 1. The derivative of g with respect to q is

g′(q) =

∞
∑

k=1

k2qk−1 =
(1− q)2 + 2q(1− q)

(1− q)4
=

1− q2

(1− q)4
.

(B11)

The infinite sum in (B9) can be given by setting q = 1/2
in (B11) as

STI0 =
1

ℓ(I0)
g′(12 ) =

1

4

1−
(

1
2

)2

(

1− 1
2

)4 =
12

4
= 3. (B12)

This is the average ST for the solutions initiated from
the interval I0. Figure 7 shows a sample solution for a
particular initial condition x(t0) = 0.00651 with ST =
22.
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FIG. 7. Cobweb diagram for Case D with h = 1 associated
with point Q (a = 2, b = 5) in Figure 2 and the structure of
the associated subintervals Ij , j = 1, 2, . . . .


