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“The very success of science in showing us how deeply ordered the natural world is provides
strong grounds for believing that there is an even deeper cause for that order.”

John C. Lennox





v

Acknowledgements

In the first place, I would like to express my deepest gratitude to Dr. Tamás
Insperger for his persistent scientific support and for his guidance during my re-
search work.

I would also like to say thanks to all my colleagues at the Department of Ap-
plied Mechanics for the great scientific and social community which I could be part
of.

I am thankful to Prof. János Turi who hosted me at the University of Texas at
Dallas in 2013 during my MSc studies and who has given me many useful profes-
sional advice. I am grateful to Dr. Jokin Muñoa who hosted me for a month in
Basque Country and gave me the opportunity to visit IK4–IDEKO in 2014. I am
also thankful to Prof. Gábor Stépán for the inspiration I have received from him
throughout my studies and my academic work.

Finally, I would like to say thanks to my family for being patient and supportive
throughout my studies.

I gratefully acknowledge the support received from the Pro Progressio Founda-
tion in the framework of the Pro Progressio PhD Scholarship Program.

This work has been supported by the European Research Council under the Eu-
ropean Union’s Seventh Framework Programme (FP/2007-2013) / ERC Advanced
Grant Agreement No340889, the Hungarian National Science Foundation under
grant OTKA-K105433 and the MTA-BME Lendület Human Balancing Research
Group No2016-6/2016. These supports are also gratefully acknowledged.





vii

Contents

Acknowledgements v

1 Introduction 1
1.1 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Mathematical preliminaries . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Stability of linear DDEs . . . . . . . . . . . . . . . . . . . . . . 4
1.2.2 Equivalent forms of delayed systems . . . . . . . . . . . . . . 5

2 Numerical methods for stability analysis 7
2.1 Pseudospectral tau method . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Lagrange interpolation . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 Tau approximation . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.3 Numerical integration . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.5 Selection of node and test function sets . . . . . . . . . . . . . 13
2.1.6 Stability of time-periodic systems . . . . . . . . . . . . . . . . 13

2.2 Spectral element method . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Comparison of spectral methods . . . . . . . . . . . . . . . . . . . . . 23

2.3.1 Exact stability boundaries . . . . . . . . . . . . . . . . . . . . . 24
2.3.2 Exact value of the rightmost root . . . . . . . . . . . . . . . . . 25
2.3.3 Methods under comparison . . . . . . . . . . . . . . . . . . . . 25
2.3.4 Results of comparison . . . . . . . . . . . . . . . . . . . . . . . 27

2.4 Extension to hybrid systems . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4.1 PsT method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.4.2 SE method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.5 New results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3 Applications to machine tool chatter 47
3.1 Milling operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.1.1 Milling models . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.1.2 Application of the SE method . . . . . . . . . . . . . . . . . . . 51
3.1.3 Extension of the SE method . . . . . . . . . . . . . . . . . . . . 53
3.1.4 Comparison with other methods . . . . . . . . . . . . . . . . . 56

3.2 Digital position control in machining . . . . . . . . . . . . . . . . . . . 60
3.2.1 Milling process with active damper . . . . . . . . . . . . . . . 61
3.2.2 Milling with controlled workpiece holder . . . . . . . . . . . . 65
3.2.3 Milling with controlled tool holder . . . . . . . . . . . . . . . . 67

3.3 New results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4 Stabilizability of delayed systems 73
4.1 Stabilizability of turning processes subjected to active damping . . . 73

4.1.1 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2 The modeling of human balancing with PIDA control . . . . . . . . . 79



viii

4.2.1 Balancing models . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.2.2 Stabilizability analysis . . . . . . . . . . . . . . . . . . . . . . . 83
4.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.3 New results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

A Results from numerical analysis 91
A.1 Legendre polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
A.2 Lobatto-type Legendre–Gauss quadrature . . . . . . . . . . . . . . . . 91
A.3 Chebyshev points and polynomials . . . . . . . . . . . . . . . . . . . . 92

Bibliography 95



ix

Dedicated to my Grandpa





1

Chapter 1

Introduction

In the recent decades an increasing number of research papers and books have dealt
with time-delay systems in applied sciences. Time delay emerged first in popula-
tion dynamics but since then its significance has been discovered in many engi-
neering and biological applications. For instance, control systems always involve
feedback delays due to finite-time information transmission, signal processing and
actuation [24, 71]. Similarly, the nervous system of humans is subjected to delay
[27, 62, 80], which affects balancing abilities and may cause movement disorders.
Reflex delay of the human nervous system is the main reason for the development
of stop-and-go traffic jams [67, 68]. Time delay plays an important role in contact
problems such as the "shimmy motion" of wheels [81]. Machine tool vibrations are
also explained by the so-called regenerative delay (for details, see Chapter 4.4 in
[75] or [2, 78]).

In the above examples, time delay typically has a destabilizing effect, which is
manifested in unwanted vibrations or oscillations around the desired steady-state
motion. The local stability analysis of these time-delay systems provides the pri-
mary characteristics of their behavior around stationary states. As a result, several
analytical and numerical methods have been developed for local stability analysis.
For instance, the D-subdivision method [75] gives a closed form solution for the sta-
bility boundaries of autonomous delay-differential equations in the space of system
parameters. While closed form solutions can be derived for the stability bound-
aries of some autonomous systems, the stability analysis of time-periodic systems
usually requires numerical approximation techniques, especially in the presence of
time-delays. The related literature provides several numerical methods for the sta-
bility analysis of time-periodic time-delay systems, such as the semi-discretization
method [29], full discretization method [18], spectral element method [36] or the
pseudospectral collocation method [12, 13].

The optimal selection of system parameters plays an important role during the
process of design of engineering applications. Stability diagrams show the stable
and unstable domains in the space of system parameters of locally linearized sys-
tems. For the calculation of stability diagrams the stability of the linearized system
has to be determined for multiple sets of system parameters. As a result, the com-
putational properties of the different numerical methods for stability analysis and
the development of new, computationally more efficient methods are still impor-
tant in engineering. Note that the current trend of automation and data exchange
in manufacturing, called Industry 4.0, aims to create smart factories, where the
physical processes are monitored and virtual copies are created of the real world.
Based on the collected information, the different modules of these smart factories
make decisions on their own, thus the manufacturing processes of Industry 4.0
involve digital control loops. Consequently, in machining, the analysis of phys-
ical processes subjected to digitally controlled systems receives greater attention.
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The modeling of such processes leads to hybrid time-delay systems whose anal-
ysis is difficult and not well-established by the engineering literature. Note that,
generally speaking, delayed processes subjected to digital feedback control are all
governed by hybrid time-delayed systems, e.g. the human-machine interactions of
haptic systems [40]. This thesis describes two efficient numerical methods which
can be used for the stability analysis of hybrid time-delayed systems. Furthermore,
the application of these numerical methods is also presented to digitally controlled
machining operations.

In addition to the stability analysis of time-delay systems, the condition of stabi-
lizability is often required in many applications. Stabilizability properties describe
whether the locally linearized dynamical system can be made stable by the proper
choice of control or system parameters. Stabilizability plays an important role in
parameter optimization, where, besides keeping the stability of the system, a cost
function has to be minimized. This thesis deals with such a problem where the
material removal rate of the machining process is maximized in turning processes
subjected to active damping by the proper selection of the control gains of the ac-
tive damper. Stabilizability is also important in human balancing, where the loss of
balance is often associated with the loss of stabilizability of the mathematical model
[27, 28]. Note that the injuries related to the death of humans are often caused by
the loss of balance among the elderly. This topic has been receiving more and more
attention due to the increasing average age of the world’s population. Further-
more, the understanding of the human balancing process can also contribute to the
field of bio-inspired robotics which has become a hot topic of research in the recent
decade. This thesis presents a new delayed feedback control rule for the modeling
of the human balancing process and determines the stabilizability properties of the
resulting mathematical model.

1.1 Outline of the thesis

This work deals with the numerical stability analysis and the stabilizability of dy-
namical systems governed by delay-differential equations (DDEs). In the next sub-
section, the mathematical basis is briefly presented, which is necessary for the sta-
bility analysis of linear DDEs.

In Chapter 2, two novel numerical methods are described for the finite dimen-
sional approximation of DDEs: the pseudospectral tau (PsT) and spectral element
(SE) methods. The derivation of these methods are presented with computational
examples and a comparison is carried out with well-known numerical methods
from the literature having high convergence rates. Furthermore, the extension of
the PsT and the SE methods is presented for hybrid feedback systems subjected to
delay and numerical integration in the feedback loop.

In Chapter 3, the presented numerical methods are applied to different machine
tool chatter models. These mathematical models take into account the feedback
loop of the linear drive of the tool holder and the workpiece holder, and the feed-
back loop of the active damper placed close to the tool tip. Stability diagrams are
determined in the plane of machining parameters and the effect of control param-
eters on the stability of machining is demonstrated.

In Chapter 4, the stabilizability of delayed dynamical systems is investigated.
Two particular problems are studied: the optimization of control parameters for the
increase of maximum admissible depth of cut in turning processes subjected to dig-
itally controlled active damper and the loss of balance in human balancing where
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the balancing process is modeled with a delayed proportional-integral-derivative-
acceleration (PIDA) feedback controller.

1.2 Mathematical preliminaries

DDEs are differential equations where the argument of state terms may incorporate
delays. The general form of nonlinear DDEs can be given as

ẋ(t) = F (t,xt) , (1.1)

where x ∈ Rs, s ∈ Z+ and xt ∈ X denotes a solution segment, defined by the shift

xt(θ) = x(t+ θ), θ ∈ [−τ, 0], (1.2)

with X = L2 ([−τ, 0];Rs) being the Hilbert space of square-integrable Rs-valued
functions on [−τ, 0]. The reason for the choice of this function space is that the
numerical methods, introduced in Chapter 2, define the inner product in the space
of square-integrable functions. Furthermore, X is required to be a Hilbert space
in order to allow the tools of calculus, applied in Chapter 2. Functional F (t,xt) :
R+ × X → Rs is a time-dependent nonlinear mapping of xt onto an s-dimensional
space of real numbers. Note that the evolution of (1.1) is determined by a functional
using solution segment xt which contains the history of the state x dating back to
time instant t− τ . Consequently, for the solution of (1.1) an initial solution segment
x0 ∈ X is necessary. If x0 is given, then solution segment xt can be determined at
any t > 0 by a solution operator U(t) : R+ ×X → X defined as

xt = U(t)x0. (1.3)

When F (t,xt) is linear then U(t) is also linear. If a stationary solution x̄t of (1.1) is
known then a DDE for perturbation ξt = xt − x̄t can be derived from (1.1) in the
form

ξ̇(t) = L(t)ξt + V (t, ξt) , (1.4)

where L(t) is a time-dependent, linear functional, while V (t, ξt) is a time-dependent
nonlinear functional containing all the higher-order terms of ξt. By the omission of
higher-order terms, the linearized (or variational) system of (1.1) can be obtained
in the form

ξ̇(t) = L(t)ξt, (1.5)

which determines the local behavior of (1.1) close to the stationary solution x̄t. A
general form of L(t) which includes distributed delays and point delays can be
given in the form

L(t)ξt = A(t)ξ(t) +
r∑
p=1

Bp(t)ξ (t− τp( t)) +

∫ 0

−σ
γ (t, θ) ξ (t+ θ) dθ, (1.6)

where A(t),Bp(t) : R+ → Rs×s and the kernel function γ (t, θ) : R2 → Rs×s may
contain finite number of discontinuities, thus the integral term can be rewritten as∫ 0

−σ
γ (t, θ) ξ (t+ θ) dθ =

m∑
b=1

∫ −σb
−σb−1

γb (t, θ) ξ (t+ θ) dθ, (1.7)
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with continuous kernel functions γb (t, θ) and σ0 = σ > σ1 > . . . > σm = 0. The
maximum value of the delay is denoted by τ = max

(
sup {τp(t)}rp=1 , σ

)
and it is

assumed that τp(t) > 0 ∀t and that τ is a finite real number.

1.2.1 Stability of linear DDEs

This thesis deals with the analysis of linear time-periodic DDEs, that is with (1.5),
under the assumption that L(t) = L(t + T ) holds for all t, where T > 0 is the
principal period of the system. In (1.6), this assumption gives A(t) = A(t + T ),
Bp(t) = Bp(t + T ) and γb (t, θ) = γb (t+ T, θ) ∀t. When (1.5) is time-periodic, its
stability is determined by the Floquet theory. According to this theory, non-trivial
solutions of (1.5) can be formulated as

ξ(t) = p(t)eλt, (1.8)

where λ ∈ C is called characteristic exponent and p(t) : R+ → Cs, with p(t) =
p(t+ T ) ∀t. This implies

ξt(θ) = pt(θ)e
λ(t+θ), (1.9)

and

ξ0(θ) = p0(θ)eλθ, (1.10)

ξT (θ) = pT (θ)eλ(T+θ) = p0(θ)eλT eλθ. (1.11)

After substituting x(t) with ξ(t) in (1.3) and substituting (1.10)–(1.11) to (1.3), one
obtains the infinite-dimensional eigenvalue-eigenvector problem

(U(T )− µ∗I) ξ0 = 0, (1.12)

where U(T ) is the monodromy operator, µ∗ = eλT is one of its eigenvalues and
ξ0 is the corresponding eigenfunction (infinite dimensional eigenvector). Since no
characteristic exponent λ exists for µ∗ = 0, the zero eigenvalues of U(T ) are omitted
and the nonzero eigenvalues are called characteristic multipliers and are denoted
by µ in the following. The necessary and sufficient condition for the stability of
(1.5) with time-periodic L(t) is that all characteristic multipliers have modulus less
than one. Note that for any characteristic exponent the corresponding characteristic
multiplier can be uniquely determined. However, this is not true in the opposite
direction, multipliers do not uniquely determine exponents.

A special case of time-periodic DDEs are the autonomous DDEs, where the
functional L has no time-dependency, that is A, Bp and γ matrices and τp delays
are time-independent in (1.6). Therefore, in case of autonomous systems, the prin-
cipal period is not defined and it can be chosen arbitrarily as any finite T ∈ R+

number, hence the stability can be still analyzed using the monodromy operator
U(T ). In the autonomous case p is time-independent in the non-trivial solutions
(1.8) of (1.5). After the substitution of (1.8) to (1.5)–(1.6), one arrives at the charac-
teristic equation

det

λI−A−
v∑
p=1

Bpe
−λτp −

∫ 0

−σ
γ (θ) e−λθdθ

 = 0. (1.13)
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The roots of this characteristic equation are the characteristic exponents. In case of
autonomous DDEs, the condition of exponential stability is that all the infinitely
many characteristic exponents have negative real parts. Consequently, the stability
of autonomous DDEs can be determined either by calculating the critical eigenval-
ues of U(T ) (i.e, the characteristic multipliers) or by calculating the critical roots of
the characteristic equation (1.13) (i.e, the critical characteristic exponents).

1.2.2 Equivalent forms of delayed systems

Time-delay problems can be formulated not only in the form of DDEs. In fact,
other mathematical problems can be constructed which are equivalent to (1.5) in
their primary characteristics.

Let operator V : D (V)→ X± be defined as

V
(
ξ0, ξ

+
)

(θ) =

{
ξ0 (θ) if θ ∈ [−τ, 0] ,

ξ+ (θ) if θ ∈ (0, h] ,
(1.14)

with domain
D (V) =

{
ξ0 ∈ X , ξ+ ∈ X+ : ξ0(0) = ξ+(0)

}
. (1.15)

Here h > 0 and X± ⊂ L2 ([−τ, h],Rs), while X+ = L1
2 ([0, h],Rs) is the Hilbert

space of Rs-valued functions which are square-integrable and whose first deriva-
tive is also square-integrable on interval [0, h]. Note that operator V(ξ0, ξ

+) simply
connects the initial function segment ξ0 and function segment ξ+ at θ = 0. Now
considering the residual of (1.5) on t ∈ [0, h], one can construct the operator equa-
tion (OpE)

A z = 0 , (1.16)

where operator A : X± → L2 ([0, h],Rs) is defined by

A z = {ż(t)−L(t)zt : t ∈ [0, h]} . (1.17)

Since L(t) is linear, one can decompose (1.16) by plugging (1.14) into (1.16) as

A−ξ0 + A+ξ+ = 0 , (1.18)

where
A−ξ0 = AV (ξ0,0) , A+ξ+ = AV

(
0, ξ+

)
. (1.19)

For any ξ0 ∈ X initial function segment, the solution ξ+ of (1.18) is precisely de-
fined by ξ+ = {ξ(t) : t ∈ [0, h]}. When L(t) is time-periodic and h = T , the mon-
odromy operator U(T ) can be expressed using (1.18) (see Section 2.2). Therefore,
(1.18) can be used for the stability analysis of (1.5).

Stability properties of (1.5) can also be described by the operator differential
equation (OpDE)

ξ̇t = G(t)ξt , (1.20)

where operator G : D (G)→ X is given by

G(t)ξt = ξ′t , (1.21)

with domain D (G) = R+ × Y , where

Y =
{
ξt ∈ X : ξ′t ∈ X , ξ′t(0) = L(t)ξt

}
⊆ X (1.22)
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and ξ′t(θ) is the derivative of ξt(θ) with respect to θ. Note that G cannot be correctly
defined when Y is time-dependent, hence varying (see page 341 of [16]). Therefore,
we assume that Y can be selected as a time-independent domain (the maximum
delay τ is finite). When G is time-invariant then (1.20) gives an abstract Cauchy
problem and operator G is called its infinitesimal generator. If and only if all the
elements of the spectrum of the infinitesimal generator lie on the left half of the
complex plane, then the abstract Cauchy problem is asymptotically stable.

In Chapter 7.1 of [25], Lemma 1.2. shows that the solution of the abstract
Cauchy problem is defined by the solution operator U(t). Furthermore, in Chapter
7.2 of [25], it is also shown that the spectrum of G is precisely given by the roots
of the characteristic equation of (1.5). This latter implies that, for the autonomous
case, the stability analysis of (1.5) and (1.20) give the same results. Numerical re-
sults presented in [13] show that (1.5) and (1.20) are equivalent regarding stability
for time-periodic systems as well. Note, that the conversion of (1.5) to (1.20) is
similar to the conversion of a high-order ordinary differential equation (ODE) to
first-order ODEs (Cauchy normal form).

By the introduction of function y(t, θ) = ξt(θ) with two independent variables
t and θ, (1.20) gives the hyperbolic partial differential equation (PDE)

∂y(t, θ)

∂t
=
∂y(t, θ)

∂θ
, θ ∈ [−τ, 0] , (1.23)

with the linear, time-dependent, non-local boundary condition

∂y(t, θ)

∂t

∣∣∣∣
θ=0

= L(t)y(t, θ) . (1.24)

This PDE representation is equivalent to (1.20) and it is often used in the literature
to describe delayed systems [86, 87]. Note, that in some engineering applications
the governing equation which models the physical phenomenon can be derived di-
rectly in the form (1.23)–(1.24), instead of (1.5). For example, the widely used DDE
model of turning with constant delay (see Chapter 5.1.2 in [29]) is a special case of
the PDE model, introduced in [88]. In particular, the DDE model describes the cut-
ting tool’s motion in the PDE model under the condition that the tool never loses
contact with the workpiece (for details see [50]). In general, equations (1.23)–(1.24)
are capable of giving a more detailed description of the delayed system than equa-
tion (1.5). This is due to the fact that in the PDE model, (1.23) describes the prop-
agation of information while (1.24) introduces delays in the system. In contrast,
DDE (1.5) embeds the propagation in the time domain using time lags. During
mathematical modeling, a decision between the use of (1.23)–(1.24) or (1.5) always
involves a trade-off since, in general, the analysis of PDEs is more difficult than the
analysis of DDEs.



7

Chapter 2

Numerical methods for stability
analysis

This chapter presents two numerical methods with high convergence rates for the
numerical stability analysis of delay-differential equations (DDEs). In addition to
the derivation of these numerical methods they are also compared to recently de-
veloped methods from the engineering literature. Furthermore, the extension of
these two numerical methods is presented for hybrid systems which include ad-
ditional terms with piecewise continuous arguments. The two numerical methods
both employ the method of weighted residuals in order to obtain a finite dimen-
sional approximation of the infinite dimensional problem of DDEs.

In the following, the method of weighted residuals is briefly demonstrated on
(1.20). At time instant t, one can approximate the solution segment ξt(θ) of (1.20)
on the domain θ ∈ [−τ, 0], using finite number of unknown variables aj(t) in a
finite dimensional function space spanned by the basis {φj}n+1

j=1 . The approximate
solution of (1.20) therefore has the form

ξ̃t(θ) =
n+1∑
j=1

aj(t)φj(θ) . (2.1)

After the substitution of ξ̃t into (1.20), one obtains the residual function

rt(θ) =
n+1∑
j=1

ȧj(t)φj(θ)−
n+1∑
j=1

aj(t)φ
′
j(θ) 6= 0 , θ ∈ [−τ, 0] . (2.2)

Note that in general the residual function is not zero since ξ̃t is only an approxi-
mation of ξt. Approximation schemes aim to determine coefficients aj(t) in a way
that the approximate solution segment ξ̃t would be closest to the exact solution of
(1.20). The method of weighted residuals weights the residual function rt(θ) by
test functions ψi(θ) over the domain θ ∈ [−τ, 0] in order to obtain a set of linearly
independent equations, from which coefficients aj(t) can be determined. The ap-
plication of the method of weighted residuals to (2.2), gives

〈rt, ψi〉 = 0 , i = 1, 2, . . . , n+ 1 ; (2.3)

where the inner product of functions rt(θ) and ψi(θ) is defined according to

〈rt, ψi〉 =

∫ b

a
rt(θ)ψi(θ)dθ , (2.4)
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with θ ∈ [a, b] = [−τ, 0] being the domain of functions rt(θ) and ψi(θ). Equations
(2.3) can be represented in a matrix form as

Nȧ(t) = Ma(t) , (2.5)

where matrices N ∈ Rs(n+1)×s(n+1) and M ∈ Rs(n+1)×s(n+1) are composed from
sub-matrices according to

N = [〈φj , ψi〉 I]n+1,n+1
i,j=1 , M =

[〈
φ′j , ψi

〉
I
]n+1,n+1

i,j=1
, (2.6)

while I ∈ Rs×s is an identity matrix and a(t) = [aj(t)]
n+1
j=1 . Note that due to the ap-

plication of the method of weighted residuals the state space X has to be a Hilbert
space, however the proper selection of X falls out of the scope of this thesis. Note
also that the solution of (2.3) is not in the domain D(G) since boundary condition

ξ̃
′
t(0) = L(t)ξ̃t (2.7)

is not satisfied. For the partial differential equation (PDE) representation this means
that (1.23) is employed but (1.24) is not satisfied. Consequently, in order to approx-
imate (1.20), boundary condition (2.7) has to be enforced.

Based on the above description, weighted residual type methods can differ in
the way they select the set of base functions and the set of test functions and also
in the way they enforce the boundary conditions. Methods thus can be categorized
based on how they enforce the boundary conditions. There are two main categories
which are briefly discussed below.

The Galerkin approximation considers the boundary conditions as constraints
on the approximate solution ξ̃t, that is, base functions φj are constructed in a way
that ξ̃t satisfies the boundary condition. Note, however that boundary condition
(2.7) is non-local, that is, it requires the exact solution of (1.5) to be known. Thus,
the non-locality of boundary condition (2.7) implies that Galerkin methods cannot
be used for the approximation of (1.20).

The tau approximation can be used to solve the problem with non-local bound-
ary conditions. Here, in contrast with the Galerkin method, base functions φj do
not need to satisfy the boundary constraints. The tau approximation technique
simply replaces an equation from (2.3) by the discretized boundary condition (2.7).
This replacement relies on the tau method which was proposed by Lanczos (see
[41]). The tau method claims that if, after this replacement, (2.3) still defines a
proper projection then the approximate solution is an element of a complete finite
dimensional subspace of the solutions of the original problem (1.20). Note again,
that in this caseX has to be a proper Hilbert space. More precise details on Galerkin
and tau approximations can be found in Chapter 2 of [23].

2.1 Pseudospectral tau method

For the pseudospectral tau (PsT) method, the term "pseudospectral" indicates that
the solution is approximated in a finite dimensional subspace, where the set of basis
functions {φj}n+1

j=1 are chosen in a way that the coordinates aj(t) of the subspace
spanned by {φj}n+1

j=1 represent the approximate solution ξ̃t(θ) at specific points of
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θ ∈ [−τ, 0]. In the following, the approximation concept of the PsT method is given
in details.

2.1.1 Lagrange interpolation

The PsT method approximates the solution segment by its Lagrange interpolant.
The approximate solution segment is given in the form

ξ̃t(θ) =
n+1∑
j=1

φj(θ)ξt(θj) , θ ∈ [−τ, 0] , (2.8)

where θj ∈ [−τ, 0] are the nodes of interpolation and φj ∈ Pn are the Lagrange
base polynomials, with Pn denoting the space of polynomials of order n. Note
that by using interpolant (2.8), the unknown coefficients of (2.1) become particular
values of the approximate solution segment at some points θj , that is aj(t) = ξt(θj).
Lagrange base polynomials have the property

φj(θk) = δj,k , (2.9)

where δj,k denotes the Kronecker-delta function. The classical form of Lagrange
base polynomials is

φj(θ) =
n+1∏
k=1
k 6=j

θ − θk
θj − θk

. (2.10)

However, the above formula has some disadvantages: it needs high number of
floating point operations to calculate φj at any given point other than the nodes
of interpolation, while the rounding errors can lead to numerical instability, fur-
thermore the formula for the derivative of φj is very complicated. The so-called
barycentric representation of Lagrange interpolants helps in the above problems.
The barycentric formula of Lagrange base polynomials is defined by

φj(θ) =

$j

θ − θj∑n+1
k=1

$k

θ − θk

, (2.11)

where the barycentric weights are given as

$j =
1

ω′(θj)
, ω(θ) =

n+1∏
j=1

(θ − θj) . (2.12)

At the nodes of interpolation the derivatives of the Lagrange base polynomials can
be calculated as

φ′j(θk) =


$j/$k

θk − θj
j 6= k ,

−
∑n+1

q=1
q 6=j

$q/$j

θj − θq
j = k .

(2.13)

Details and derivation of the above formulae can be found in [7]. Note, that using
(2.13), the derivative of the Lagrange interpolant at the nodes of interpolation can
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be calculated simply by a matrix-vector multiplication, since

ξ̃
′
t(θj) =

n+1∑
j=1

Dk,j ξ̃t(θj) , k = 1, . . . , n+ 1 ; (2.14)

where Dk,j = φ′j(θk). Note that the value of the Lagrange interpolant at n+ 1 num-
ber of arbitrary distinct points {θ∗l }

n+1
l=1 is given by a matrix-vector multiplication:

ξ̃t(θ
∗
l ) =

n+1∑
j=1

Ll,j ξ̃t(θj) , l = 1, . . . , n+ 1 ; (2.15)

where Ll,j = φj(θ
∗
l ) defines a linear transformation between the two point sets

given by the interpolant evaluated at node sets {θ∗l }
n+1
l=1 and {θj}n+1

j=1 . Due to the
uniqueness of the Lagrange interpolant, its derivative can be calculated at any
given point set {θ∗l }

n+1
l=1 by the matrix-matrix-vector multiplication

ξ̃
′
t(θ
∗
l ) =

n+1∑
k=1

n+1∑
j=1

Ll,kDk,j ξ̃t(θj) , l = 1, . . . , n+ 1 . (2.16)

2.1.2 Tau approximation

Using (2.8), after the replacement of the equation corresponding to i = n + 1 in
(2.3) with the discretized boundary condition (2.7) and coordinate transformation
ζ = 2θ/τ + 1, equation (2.5) obtains the form

N Ẋ(t) = M(t)X(t) , (2.17)

where X(t) =
[
ξ̃t(ζj)

]n+1

j=1
while the elements of matrices N and M(t) are now

given according to

Ni,j =

{
〈φj , ψi〉 I i = 1, . . . , n ;

φj(1) I i = n+ 1 ;
(2.18)

Mi,j(t) =

{
2
τ

〈
φ′j , ψi

〉
I i = 1, . . . , n ;

L(t)φj i = n+ 1 .
(2.19)

If N is invertible then (2.17) can be written as

Ẋ(t) = G(t)X(t) , (2.20)

where G(t) = N−1M(t) is a finite dimensional approximation of operator G(t).
Note that in (2.3) the multiplication of residual function (2.2) with test functions
ψi, i = 1, . . . , n gives the projection of the residual function onto a space spanned
by the test function set {ψi}ni=1. Since the approximate solution (2.8) is an element
of the subspace of polynomials of order n, by choosing the test function set as a
base in the subspace of polynomials of order n, the residual (2.2) will be zero in
a co-dimension one subspace of the space Pn of (2.8). The boundary condition is
enforced by (2.7), which gives additional relationship between coefficients ξt(θj).
If a proper set of test functions is chosen, the solution of the system subject to tau
approximation can be an element of a complete finite dimensional subspace of the
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FIGURE 2.1: Representation of the solution A) of PDE (1.23)–(1.24) (blue surface),
B) of OpDE (1.20) (thick blue lines) and C) of DDE (1.5) (blue line), and their ODE

approximations (red surface and lines).

solution of the original problem (1.20). Consequently, by increasing n the approxi-
mation can converge to the original problem. In this thesis, the suitability of the test
function set is not investigated analytically, but they have been tested numerically.
The numerical experiments showed that for the autonomous case the eigenvalues
of G in (2.20) give a finite dimensional approximation for the point spectrum of G.

Although this method is capable of the approximation of the point spectrum of
G, the main focus of this thesis is only on the numerical stability analysis of DDEs.
Since the ordinary differential equation (ODE) approximation (2.20) is stable if and
only if all eigenvalues of G are located in the left half of the complex plane, only
the rightmost eigenvalue of G is of interest. Note that if DDE (1.5) is modified that
affects only the last rows of M(t) corresponding to i = n + 1 and the multiplier of
the remaining rows. Therefore, when s and n are fixed, the inverse of N and the
integral terms in (2.18)–(2.19) have to be calculated only once, which is beneficial
during the construction of stability charts (as discussed in Section 2.3)

In Figure 2.1, an illustration of the ODE approximation (2.20) is shown for s = 1
and n = 2. The solution of the ODE approximation is presented in Figures 2.1/A
and 2.1/B together with the solution for the PDE (1.23)–(1.24) and operator differ-
ential equation (OpDE) (1.20) representations of DDE (1.5), respectively. In Figure
2.1, the exact solution is shown by blue color while the solution of the ODE approx-
imation is depicted by red color. The thin red lines are given by the points of the
interpolant at the nodes of interpolation, that is they are given by the elements of
X(t). In Figure 2.1/A, these lines define the red surface which approximates the
exact solution of (1.23)–(1.24). Note that, due to (1.23), the isocurves of the blue
surface are lines with slope 1. In Figure 2.1/B the thin red lines define an approx-
imation for the solution segment ξt of (1.20) at each time instant t. These solution
segment approximations are shown by thick red lines for time instants 0, t1 and t2.
At each t time instant, the solution segment ξt coincides with the corresponding
segment of y(t, θ). This is highlighted by gray windows in Figures 2.1/A and 2.1/B
for time instants 0, t1 and t2. Note that each element of X(t) gives an approxima-
tion for the solution ξ(t) of DDE (1.5) due to the definition (1.2) of solution segment
ξt. This is illustrated in Figure 2.1/C.
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2.1.3 Numerical integration

Equations (2.18)–(2.19) contain integral terms whose analytical evaluation would
be time-consuming or even impossible. Note however, that since {ψi}ni=1 ⊂ Pn−1,
the terms in the integrals are polynomials with maximum order 2n− 1. As a result,
the integral terms in (2.18)–(2.19) can be evaluated accurately by the Lobatto-type
Legendre-Gauss quadrature (see Appendix A.2 for details) using n + 1 number of
points. With the application of this quadrature, the integral terms in (2.18)–(2.19)
can be calculated as

〈φj , ψi〉 =

n+1∑
q=1

Fi,q Lq,j , i = 1, . . . , n+ 1 ; (2.21)

〈
φ′j , ψi

〉
=

n+1∑
q=1

n+1∑
k=1

Fi,q Lq,kDk,j , i = 1, . . . , n+ 1 ; (2.22)

where Fi,q = ψi(ζ
∗
q )wq with

{
ζ∗q
}n+1

q=1
⊂ [−1, 1] and {wq}n+1

q=1 being the set of nodes
and the corresponding set of weights of the quadrature. Note that if the interpo-
lation and quadrature node sets are the same, then Lq,j = δq,j , that is formulas
(2.21)–(2.22) are simplified by one matrix multiplication. Also note that with the
application of the standard (non-Lobatto-type) Legendre-Gauss quadrature for in-
tegration, the number of multiplications could be further decreased. This is owing
to the fact that this quadrature gives accurate results for the integral of polynomials
of order 2n− 1 by using only n number of nodes.

2.1.4 Example

Consider the DDE given by (1.5)–(1.7). The substitution of (2.21)–(2.22) into (2.18)–
(2.19) gives

Ni,j =

{∑n+1
q=1 Fi,q Lq,j I i = 1, . . . , n ;

φj(1) I i = n+ 1 ;
(2.23)

Mi,j(t) =

{
2
τ

∑n+1
q=1

∑n+1
k=1 Fi,q Lq,kDk,j I i = 1, . . . , n ;

L(t)φj i = n+ 1 .
(2.24)

Using Lobatto-type Legendre-Gauss quadrature for integration the last row of Mi,j(t)
can be expanded as

L(t)φj ≈ A(t)φj(1) +
r∑
p=1

Bp(t)φj(−τ̂p(t))

+
m∑
b=1

τ(σ̂b − σ̂b−1)

4

n+1∑
q=1

γ
(
t,

(ζ̂q−1)τ
2

)
φj(ζ̂q)wq , (2.25)

where σ̂b−1 = 1−2σb−1/τ , σ̂b = 1−2σb/τ , τ̂p = −1+2τp/τ and ζ̂q =
σ̂b−σ̂b−1

2 (ζ∗q +1)+

σ̂b−1, while Lagrange base polynomials φj(ζ) are defined by the node set {ζj}n+1
j=1

on the rescaled domain ζ ∈ [−1, 1]. Finally, the finite dimensional approximation
of G(t) is given by (2.17)–(2.20).
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2.1.5 Selection of node and test function sets

Note that due to the Lagrange interpolation, the base function set {φj}n+1
j=1 is pre-

cisely defined by the node set {ζj}n+1
j=1 of interpolation. Consequently, the error

between the interpolated function segment ξt and its interpolant ξ̃t can be mini-
mized by the proper selection of node set {ζj}n+1

j=1 . The error |ξt(ζ) − ξ̃t(ζ)|C[−1,1]

between ξt and ξ̃t can be minimized by the selection of Chebyshev nodes for the
nodes of interpolation, where the distance between ξt and ξ̃t is measured by the
norm

|ξt(θ)|C[a,b] = max {|ξt(θ)| : θ ∈ [a, b]} . (2.26)

Details on Chebyshev nodes and polynomials can be found in Appendix A.3. Due
to its minimum error property, the Chebyshev node set is used for the PsT method
as the node set of interpolation.

For the test function set {ψi}ni=1 two choices were investigated: the set
{
ζi−1

}n
i=1

(which is a base in Pn−1), and the set defined by Legendre polynomials of order up
to n−1 (which is an orthogonal base in Pn−1). For details on Legendre polynomials
see Appendix A.1. In case of low n, these sets give precisely the same results for
the eigenvalues of G. However, above a certain order, the set

{
ζi−1

}n
i=1

results
in badly conditioned matrix N, which destroys the convergence of the method.
This problem is avoided, by using an orthogonal base in Pn−1 (e.g. the Legendre
polynomials). Consequently, for the PsT method, the test functions are defined as
ψi = Pi−1, i = 1, . . . , n; where Pi is a Legendre polynomial of order i.

2.1.6 Stability of time-periodic systems

For the autonomous case, the stability of ODE approximation (2.20) is determined
by its rightmost eigenvalue on the complex plane of the matrix approximation G
of the infinitesimal generator G. In contrast, for time-periodic systems a matrix
approximation U for the monodromy operator U(T ) has to be determined. Since
the elements of X(t) precisely determine the approximate solution segment x̃t at
t ≥ 0 time instant, a matrix approximation of the monodromy operator can be
defined by the mapping

X(T ) = UX(0) . (2.27)

In general, U cannot be calculated from (2.20) in closed form, however a simple
approximation for U can be determined via the approximation of the time-periodic
ODE (2.20) by a series of autonomous ODEs in the form

˙̃Xk(t) = GkX̃
k(t) t ∈

[
(k − 1)∆t̃, k∆t̃

)
, k = 1, 2, . . . , m̃ ; (2.28)

where X̃k =
{

X̃k(t) : t ∈
[
(k − 1)∆t̃, k∆t̃

)}
solution segments are connected by

boundary conditions

X̃k
(
k∆t̃

)
= X̃k+1

(
k∆t̃

)
, k = 1, 2, . . . , m̃− 1 . (2.29)

In (2.28), the time step is ∆t̃ = T/m̃ with m̃ ∈ N being the period resolution, while

Gk =
1

∆t̃

∫ k∆t̃

(k−1)∆t̃
G(θ)dθ (2.30)
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is a piecewise constant approximation of G(t). The approximation of U is then
given by

U ≈ eĜm̃eĜm̃−1 · · · eĜ1 , (2.31)

where

Ĝk = Gk∆t̃ = N−1

∫ ∆t̃

0
M(θ + (k − 1)∆t̃)dθ , k = 1, 2, . . . , m̃ . (2.32)

Note that the monodromy operator is approximated in two steps. First, (1.20) is
discretized by the PsT method, then (2.20) is approximated by (2.28). In contrast,
the direct approximation of the solution operator is more sound, which can be car-
ried out e.g. by the spectral element (SE) method or the collocation technique in
[10].

In the following, two examples are shown for the calculation of stability charts
of time-periodic DDEs. Namely, stability charts are determined for the delayed
Mathieu equation and for an oscillator with time-periodic delay. Examples for the
calculation of stability charts of autonomous DDEs are presented in Section 2.3.

Delayed Mathieu equation. The first-order form of the delayed Mathieu equa-
tion is

ξ̇(t) = (A0 + AT (t)) ξ(t) + B ξ(t− τ) , (2.33)

where

A0 =

[
0 1
−a 0

]
, AT (t) = ε

[
0 0

− cos
(

2πt
T

)
0

]
, B =

[
0 0
b 0

]
. (2.34)

The derivation of the exact stability boundaries for this equation can be found in
[31]. Using the PsT method, the discretization of (2.33) is carried out according to
(2.23)–(2.24), where now

L(t)φj = (A0 + AT (t))φj(1) + Bφj(−1) . (2.35)

Note, that for the computation of U, integral terms in (2.32) have to be calculated
only once, even for varying a, b, ε, τ system parameters. By increasing both n and
m̃, one can observe the convergence of the approximate stability chart to the ana-
lytical one. In Figure 2.2, the converged stability boundaries are shown for fixed τ
and T parameters.

Oscillator with time-periodic delay. The first-order form of this oscillator is

ξ̇(t) = A0 ξ(t) + B ξ(t− τ1(t)) , (2.36)

where matrices A0 and B are defined in (2.34), and τ1(t + T ) = τ1(t) with τ1(t) ≥
0 ∀t. Again, the discretization of (2.36) is performed according to (2.23)–(2.24),
where now

L(t)φj = A0 φj(1) + Bφj

(
1− 2τ1(t)

τ

)
, (2.37)

with τ being the maximum value of the delay. In Figure 2.3 approximate stability
charts are shown for the time-periodic delay

τ1(t) = 2π
(
1 + ε cos

(
2πt
T

))
. (2.38)
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FIGURE 2.2: Stability chart of the delayed Mathieu equation for τ = T = 2π,
n = 12 and m̃ = 15
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FIGURE 2.3: Stability charts of the oscillator with time-periodic delay for n = 15
and m̃ = 20.

After the comparison of the results presented in Figure 2.3 and the results shown in
Fig. 4.11 in Chapter 4 of [29], one can observe that the boundaries of stability, deter-
mined by the PsT method, converge to those determined by the semi-discretization
method.

2.2 Spectral element method

The SE method has been recently introdued in the literature for the stability anal-
ysis of DDEs [36–38]. This numerical method was first published in [37] for au-
tonomous DDEs with single delay, thereafter it was extended in [38] to autonomous
DDEs with distributed delay and generalized to time-periodic DDEs with multiple
point delays in [36]. Although the spectral element method has been a handy tool
for the stability analysis of time-periodic DDEs, its application was not straightfor-
ward due to the lack of explicit formulas for the computation of the matrix approx-
imation U of monodromy operator U(T ). While explicit formulas were presented
in [37] for the construction of U for autonomous DDEs with a single point delay,
[38] and [36] do not provide any explicit formula for the general case with multiple
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point and distributed delays and with time-periodic coefficients. In the following,
the derivation of the SE method is given for (1.5)–(1.7) based on [48]. Explicit for-
mulas are derived for all components of the matrices, which are necessary for the
computation of U. Furthermore, in contrast with [36], here the formula of U is
derived using operator equations.

By assuming constant delays and with the application of numerical integration,
(1.5)–(1.7) can be approximated by a DDE with point delays in the form

ξ̇(t) = A(t)ξ(t) +
v∑
p=1

Bp(t)ξ(t− τp), (2.39)

where v > r and for p > r

Bp(t) =
σb(p)−1 − σb(p)

2
γb(p)

(
t, θ∗q(p)

)
wq(p), (2.40)

with delays

τp = −θ∗q(p) =
σb(p) − σb(p)−1

2

(
ζ∗q(p) + 1

)
+ σb(p)−1 (2.41)

and indices

q(p) = mod (p− r − 1, n+ 1) + 1 (2.42)

b(p) = floor

(
p− r − 1

n+ 1

)
+ 1. (2.43)

In the above formulas mod (a, b) is the modulo function of awith respect to b, while
floor(·) denotes the floor function. Similarly to the PsT method, ζ∗q ∈ [−1, 1] and wq
denote the quadrature nodes and the corresponding weights. By using n+ 1 num-
ber of quadrature nodes for each integral term v = r + m(n + 1). The SE method
applies the Lobatto-type Legendre-Gauss quadrature because it keeps a good accu-
racy and the method reuses the quadrature during the calculation. Note however,
that quadratures other than the Lobatto-type Legendre-Gauss quadrature can also
be used for integration. In fact, the standard Legendre-Gauss quadrature or the
Clenshaw-Curtis quadrature can increase the order of accuracy of the approximate
system (2.39) (see [85] for details).

The SE method approximates the operator equation form of (2.39). The exten-
sion of the length of time history to an integer multiple τ̂ = ΓT ≥ τ of the principal
period T with

Γ =

floor
(

max(τ,T )
T

)
if mod (max (τ, T ) , T ) = 0,

floor
(

max(τ,T )
T

)
+ 1 otherwise,

(2.44)

and the consideration of the residual of (1.5) over one principal period leads to
operator equation (1.16), where operator A is now defined as

A z =

ż(t)−A(t)z(t)−
v∑
p=1

Bp(t)z(t− τp) : t ∈ [0, T ]

 , (2.45)
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FIGURE 2.4: Splitting of the solution segment z for the case s = 1, Γ = 2 and
E = 2. The depicted delay τp results in rp = 2.

and the solution segment z is now given in the form

z(θ) =

{
ξ0(θ) if θ ∈ [−τ̂ , 0],

ξ(θ) if θ ∈ (0, T ].
(2.46)

The SE method splits this solution segment onto (Γ + 1)E number of equidistant
sub-segments (referred to as elements in the following) as

zk = {z(θ) : t ∈ ((k − 1)h, kh]} , k = −EΓ + 1,−EΓ + 2, . . . , E; (2.47)

where h = T/E denotes the length of elements. The splitting of solution segment z
is illustrated in Figure 2.4 for specific s, Γ and E parameters. Subsequent elements
are connected at their boundaries, therefore conditions

zk(kh) = zk+1(kh), k = −EΓ + 1,−EΓ + 2, . . . , E − 1; (2.48)

hold. The splitting of solution segment z transforms (1.16) with (2.45) to a system
of operator equations

Skzk −
v∑
p=1

Qk,pzk−rp−1 −
v∑
p=1

Rk,pzk−rp = 0, k = 1, 2, . . . , E; (2.49)

where the operators are defined as

Skzk=

{
żk(t)−A(t)zk(t) if t ∈ ((k−1)h, kh] ,

0 otherwise,
(2.50)

Qk,pzk−rp−1 =

{
Bp(t)z

k−rp−1(t−τp) if t ∈ ((k−1)h, (k−1)h+ϑp] ,

0 otherwise,
(2.51)

Rk,pzk−rp =

{
Bp(t)z

k−rp(t−τp) if t ∈ ((k−1)h+ϑp, kh] ,

0 otherwise,
(2.52)
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with

rp =

{
floor

( τp
h

)
− 1 if mod(τp, h) = 0,

floor
( τp
h

)
otherwise,

, ϑp =

{
h if mod(τp, h) = 0,

mod(τp, h) otherwise,

(2.53)
(see the illustration in Figure 2.4). By the introduction of element-wise (local) coor-
dinates

ζk =
2 (t− (k − 1)h)

h
− 1, k = −EΓ + 1,−EΓ + 2, . . . , E; (2.54)

and dropping the index k immediately (see the illustration in Figure 2.4), operators
(2.50)–(2.52) assume the form

Skzk=

{
2
h

d
dζ z

k(ζ)−A
(
h(ζ+1)

2 +(k−1)h

)
zk(ζ) if ζ ∈ (−1, 1] ,

0 otherwise,
(2.55)

Qk,pzk−rp−1 =

{
Bp

(
h(ζ+1)

2 +(k−1)h

)
zk−rp−1(ζ+2−ϑ̂p) if ζ ∈ (−1,−1+ϑ̂p],

0 otherwise,

(2.56)

Rk,pzk−rp =

{
Bp

(
h(ζ+1)

2 +(k−1)h

)
zk−rp(ζ−ϑ̂p) if ζ ∈ (−1+ϑ̂p, 1],

0 otherwise,
(2.57)

where ϑ̂p = 2ϑp/h. The application of element-wise coordinate transformation
(2.54) to boundary conditions (2.48) gives

zk(1) = zk+1(−1), k = −EΓ + 1,−EΓ + 2, . . . , E − 1. (2.58)

The SE method approximates each element zk with its Lagrange interpolant as

z̃k(ζ) =
n+1∑
j=1

φj(ζ)z̃k,j , k = −EΓ + 1,−EΓ + 2, . . . , E; (2.59)

where z̃k,j = zk(ζj) and φj(ζ) are the Lagrange base polynomials. The node set
of interpolation {ζj}n+1

j=1 ⊂ [−1, 1] is chosen to be of Lobatto-type, that is there are
nodes on the endpoints of interval ζ ∈ [−1, 1], which simplifies boundary condi-
tions (2.58) to

z̃k,n+1 = z̃k+1,1, k = −EΓ + 1,−EΓ + 1, . . . , E − 1 (2.60)

(see the illustration in Figure 2.4 for k = 0). Note that together with boundary
conditions (2.60), (2.59) gives a piecewise Lagrange interpolant for z. After the sub-
stitution of the Lagrange interpolant (2.59) to (2.49), one obtains residual function
segments

rk = Skz̃k −
v∑
p=1

Qk,pz̃k−rp−1 −
v∑
p=1

Rk,pz̃k−rp 6= 0, k = 1, 2, . . . , E. (2.61)

In general, the approximate solution z̃k cannot satisfy operator equation (1.16), thus
the residual function is nonzero. In order to approximate the monodromy opera-
tor, a mapping between coefficients {z̃k,j}E,n+1

k=1,j=1 and {z̃k,j}0,n+1
k=−EΓ+1,j=1 have to be
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determined. This requires sE(n+ 1) number of independent equations. The appli-
cation of the method of weighted residuals to (2.61) gives〈

rk, ψi

〉
= 0, k = 1, 2, . . . , E; i = 1, 2, . . . , n+ 1. (2.62)

Here the test functions ψi are chosen as the base functions of the subspace Pn of the
approximate solution. The same way as for the PsT method, they are selected to be
the Legendre polynomials as ψi = Pi−1. Note that other ways for the selection of
test functions also lead to convergent approximation schemes. E.g. in [43] the test
function set is determined by the least-square method.

Equations (2.62) do not consider the boundary conditions corresponding to k =
0, 1, . . . , E−1 in (2.60). These boundary conditions require the solution to be known,
that is they are non-local. In order to enforce the boundary conditions, the tau
method is applied. Similarly to the PsT method, equations corresponding to the
test function of highest order (that is to Pn) are replaced for each k in (2.62). After
this replacement, (2.62) and (2.60) give the system of algebraic equations

z̃1,1 = z̃0,n+1 (2.63)

Ski,1z̃k−1,n+1 +
n+1∑
j=2

Ski,j z̃k,j −
v∑
p=1

Qk,p
i,1 z̃k−rp−2,n+1

−
v∑
p=1

n+1∑
j=2

Qk,p
i,j z̃k−rp−1,j −

v∑
p=1

Rk,p
i,1 z̃k−rp−1,n+1 −

v∑
p=1

n+1∑
j=2

Rk,p
i,1 z̃k−rp,j = 0,

k = 1, 2, . . . , E; i = 1, 2, . . . , n; (2.64)

where

Ski,j =

∫ 1

−1

(
2
hIφ′j(ζ)−A

(
h(ζ+1)

2 +(k−1)h

)
φj(ζ)

)
ψi(ζ)dζ, (2.65)

Qk,p
i,j =

∫ −1+ϑ̂p

−1
Bp

(
h(ζ+1)

2 +(k−1)h

)
φj

(
ζ + 2− ϑ̂p

)
ψi(ζ)dζ, (2.66)

Rk,p
i,j =

∫ 1

−1+ϑ̂p

Bp

(
h(ζ+1)

2 +(k−1)h

)
φj

(
ζ − ϑ̂p

)
ψi(ζ)dζ. (2.67)

Using Lobatto-type Legendre-Gauss quadrature, the above integrals can be com-
puted numerically as

Ski,j = 2
hI

n+1∑
q=1

n+1∑
l=1

Fi,qLq,lDl,j −
n+1∑
q=1

Fi,qA
k
qLq,j , (2.68)

Qk,p
i,j =

n+1∑
q=1

FQ,pi,q BQ,k,p
q LQ,pq,j , (2.69)

Rk,p
i,j =

n+1∑
q=1

FR,pi,q BR,k,p
q LR,pq,j , (2.70)
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where terms, corresponding to the periodic coefficients are calculated as

Ak
q = A

(
h
2 (ζ∗q + 1) + (k − 1)h

)
, (2.71)

BQ,k,p
q = Bp

(
ϑp
2 (ζ∗q + 1) + (k − 1)h

)
, (2.72)

BR,k,p
q = Bp

(
h−ϑp

2 (ζ∗q + 1) + ϑp + (k − 1)h
)
, (2.73)

while Fi,q, Lq,j and Dk,j are defined in Sections 2.1.1 and 2.1.3 and

FQ,pi,q =
wqϑ̂p

2
ψi

(
ϑ̂p
2 (ζ∗q + 1)− 1

)
, LQ,pq,j = φj

(
ϑ̂p
2 (ζ∗q − 1) + 1

)
, (2.74)

FR,pi,q =
wq(2− ϑ̂p)

2
ψi

(
(2−ϑ̂p)ζ∗q+ϑ̂p

2

)
, LR,pq,j = φj

(
(2−ϑ̂p)ζ∗q−ϑ̂p

2

)
. (2.75)

Note that if the nodes of interpolation are chosen to be the same as the quadrature
nodes, then due to the property (2.9) of the interpolant, (2.68) reduces to

Ski,j = 2
hI

n+1∑
q=1

Fi,qDq,j − Fi,j Ak
j . (2.76)

In this thesis, the nodes of interpolation of the SE method are chosen according
to the Lobatto-type Legendre-Gauss quadrature, thus the above simplification of
(2.68) applies.

Finally, the nonzero parts of the matrix approximation U ∈ Rs(EΓn+1)×s(EΓn+1)

of the monodromy operator are given by

U (1 : sE(Γ− 1)n, sEn+ 1 : sEΓn) = I, (2.77)

U (sE(Γ− 1)n+ 1 : s(EΓn+ 1)) = Λ−1Υ, (2.78)

where the elements of matrices Λ ∈ Rs(En+1)×s(En+1) and Υ ∈ Rs(En+1)×s(EΓn+1)

are computed according to (2.63)–(2.64) as

Λ(1 : s, 1 : s) = I, (2.79)
Λ(s+ s(k − 1)n+ 1 : s+ skn, :) = Λk, k = 1, 2, . . . , E; (2.80)
Υ(1 : s, sEΓn+ 1 : s+ sEΓn) = I, (2.81)
Υ(s+ s(k − 1)n+ 1 : s+ skn, :) = Υk, k = 1, 2, . . . , E; (2.82)

with

Λk = ΛS
k +

v∑
p=1

(
ΛQ,p
k + ΛR,p

k

)
, Υk =

v∑
p=1

(
ΥQ,p
k + ΥR,p

k

)
, (2.83)
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and

ΛS
k (:, s(k−1)n+1:s+skn)=

[
Ski,j

]n,n+1

i=1,j=1
, (2.84)

ΛQ,p
k (:, s(k−rp−2)n+1:s+s(k−rp−1)n)=

[
−Qk,p

i,j

]n,n+1

i=1,j=1
, if k ≥ rp+2, (2.85)

ΛR,p
k (:, s(k−rp−1)n+1:s+s(k−rp)n)=

[
−Rk,p

i,j

]n,n+1

i=1,j=1
, if k ≥ rp+1, (2.86)

ΥQ,p
k (:, s(EΓ+k−rp−2)n+1:s+s(EΓ+k−rp−1)n)=

[
Qk,p
i,j

]n,n+1

i=1,j=1
, if k<rp+2,

(2.87)

ΥR,p
k (:, s(EΓ+k−rp−1)n+1:s+s(EΓ+k−rp)n)=

[
Rk,p
i,j

]n,n+1

i=1,j=1
, if k<rp+1. (2.88)

The first and second arguments of the above matrices indicate the indices of the
rows and the columns, respectively, according to Matlab syntax. Note that in (2.78),
Λ and Υ are the finite dimensional approximations of operators A+ and A− in
(1.18), respectively.

The above description provides compact formulas for the construction of the
matrix approximation U of the monodromy operator U(T ) for the general case
(2.39). However, application of these formulas to specific examples is not always
straightforward. In order to help to understand the process of computation, a com-
putational example is given for particular computational and system parameters
for a time-periodic oscillator with two delays.

Time-periodic oscillator with two delays. The first order form of this oscillator
reads

ξ̇(t) = A(t)ξ(t) + Bξ(t− τ1) + Bξ(t− τ2), (2.89)

where now

A(t) =

[
0 1

−6− ε cos(2πt) 0

]
, B =

[
0 0
1 0

]
. (2.90)

Assume that E = 3 and n = 2, that is 3 elements and 3 interpolation nodes are
used. Consequently, the length of the elements is h = T/3 and the Lobatto-type
Legendre-Gauss quadrature nodes and weights are ζ∗1 = −1, ζ∗2 = 0, ζ∗3 = 1 and
w1 = 1/3, w2 = 4/3, w3 = 1/3; respectively (see Appendix A.2). Note that the
nodes of interpolation are the same as the quadrature nodes, that is ζj = ζ∗j for
j = 1, 2, 3. The test functions are the Legendre polynomials up to degree 1, hence
ψ1(ζ) = 1 and ψ2(ζ) = ζ (see Appendix A.1). Assume that 2h < τ1 < 3h and
4h < τ2 < 5h, therefore (2.44) gives Γ = 2, which results in r1 = 2 and r2 = 4. After
ϑ1 = mod (τ1, h), ϑ2 = mod (τ2, h) and ϑ̂1 = 2ϑ1/h, ϑ̂2 = 2ϑ2/h are computed, the
submatrices (2.68)–(2.70) can be calculated. Matrices Λ ∈ R14×14 and Υ ∈ R14×26

can be computed according to (2.79)–(2.88). These matrices can be decomposed as

Λ = Λ0 + ΛS +
2∑
p=1

(
ΛQ,p + ΛR,p

)
, Υ = Υ0 +

2∑
p=1

(
ΥQ,p + ΥR,p

)
, (2.91)



22 Chapter 2. Numerical methods for stability analysis

where the structure of the matrices are given by

ΛS =



0 0 0 0 0 0 0
S1

1,1 S1
1,2 S1

1,3 0 0 0 0

S1
2,1 S1

2,2 S1
2,3 0 0 0 0

0 0 S2
1,1 S2

1,2 S2
1,3 0 0

0 0 S2
2,1 S2

2,2 S2
2,3 0 0

0 0 0 0 S3
1,1 S3

1,2 S3
1,3

0 0 0 0 S3
2,1 S3

2,2 S3
2,3


, (2.92)

ΛR,1 =



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

−R3,1
1,1 −R3,1

1,2 −R3,1
1,3 0 0 0 0

−R3,1
2,1 −R3,1

2,2 −R3,1
2,3 0 0 0 0


, (2.93)

ΥQ,1 =



0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 Q1,1
1,1 Q1,1

1,2 Q1,1
1,3 0 0 0 0

0 0 0 0 0 0 Q1,1
2,1 Q1,1

2,2 Q1,1
2,3 0 0 0 0

0 0 0 0 0 0 0 0 Q2,1
1,1 Q2,1

1,2 Q2,1
1,3 0 0

0 0 0 0 0 0 0 0 Q2,1
2,1 Q2,1

2,2 Q2,1
2,3 0 0

0 0 0 0 0 0 0 0 0 0 Q3,1
1,1 Q3,1

1,2 Q3,1
1,3

0 0 0 0 0 0 0 0 0 0 Q3,1
2,1 Q3,1

2,2 Q3,1
2,3


, (2.94)

ΥR,1 =



0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 R1,1
1,1 R1,1

1,2 R1,1
1,3 0 0

0 0 0 0 0 0 0 0 R1,1
2,1 R1,1

2,2 R1,1
2,3 0 0

0 0 0 0 0 0 0 0 0 0 R2,1
1,1 R2,1

1,2 R2,1
1,3

0 0 0 0 0 0 0 0 0 0 R2,1
2,1 R2,1

2,2 R2,1
2,3

0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0


, (2.95)

ΥQ,2 =



0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 Q1,2
1,1 Q1,2

1,2 Q1,2
1,3 0 0 0 0 0 0 0 0

0 0 Q1,2
2,1 Q1,2

2,2 Q1,2
2,3 0 0 0 0 0 0 0 0

0 0 0 0 Q2,2
1,1 Q2,2

1,2 Q2,2
1,3 0 0 0 0 0 0

0 0 0 0 Q2,2
2,1 Q2,2

2,2 Q2,2
2,3 0 0 0 0 0 0

0 0 0 0 0 0 Q3,2
1,1 Q3,2

1,2 Q3,2
1,3 0 0 0 0

0 0 0 0 0 0 Q3,2
2,1 Q3,2

2,2 Q3,2
2,3 0 0 0 0


, (2.96)

ΥR,2 =



0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 R1,2
1,1 R1,2

1,2 R1,2
1,3 0 0 0 0 0 0

0 0 0 0 R1,2
2,1 R1,2

2,2 R1,2
2,3 0 0 0 0 0 0

0 0 0 0 0 0 R2,2
1,1 R2,2

1,2 R2,2
1,3 0 0 0 0

0 0 0 0 0 0 R2,2
2,1 R2,2

2,2 R2,2
2,3 0 0 0 0

0 0 0 0 0 0 0 0 R3,2
1,1 R3,2

1,2 R3,2
1,3 0 0

0 0 0 0 0 0 0 0 R3,2
2,1 R3,2

2,2 R3,2
2,3 0 0


(2.97)
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FIGURE 2.5: Stability charts of the time-periodic oscillator with two delays (2.89)
for different ε values. The number of elements is E = 1, the order of interpolation

is n = 10.

and

Λ0 =


I 0 · · · 0

0 0
...

...
. . .

...
0 · · · · · · 0

 , Υ0 =


0 · · · 0 I
... 0 0
... . .

. ...
0 · · · · · · 0

 . (2.98)

Furthermore, ΛQ,2 = ΛR,2 = 0 because τ2 > T and ΛQ,1 = 0 because E < r1 + 2.
Finally, the matrix approximation U ∈ R26×26 of the monodromy operator can be
constructed according to (2.77)–(2.78). Note that BQ,k,p

q = BR,k,p
q = B for p =

1, 2; k = 1, 2, 3 and q = 1, 2, 3, hence Qk,p
i,j = Qk+1,p

i,j and Rk,p
i,j = Rk+1,p

i,j for k =
1, 2. In order to determine stability boundaries, the matrix approximation U of the
monodromy operator has to be computed in several points of the (τ1, τ2) parameter
plane. Note, however, that if τ1 and τ2 are changed, then only the terms FQ,pi,q , FR,pi,q

and LQ,pi,q , LR,pi,q for p = 1, 2; i = 1, 2 and q = 1, 2, 3 have to be recomputed and all
the other terms remain the same. This feature is reflected in the low time-demand
of the SE method for the calculation of the stability chart of (2.89), which is shown
in Figure 2.5.

2.3 Comparison of spectral methods

In this section the efficiency of the PsT and SE methods are compared with two
methods from the literature. Comparison is made based on results, obtained for
three linear autonomous DDEs: the Hayes equation, an oscillator with two delays
and an oscillator with distributed delay. In order to provide a base for comparison
it is necessary to calculate the exact stability boundaries and the rightmost charac-
teristic exponents of the investigated equations. These are detailed in the sequel.
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2.3.1 Exact stability boundaries

For the determination of stability boundaries the D-subdivision method [75] is used
which utilizes the fact that the system loses stability when a root is crossing the
imaginary axis, thus it has the form λ = iβ. Substituting this into the characteristic
equation (1.13), one can determine co-dimension 1 surfaces in the space of system
parameters with running parameter β. When there are only two system parameters
these co-dimension 1 surfaces result in the so-called D-curves on the plane of sys-
tem parameters. These D-curves split the plane of system parameters onto domains
where the number of unstable characteristic roots is the same. There are different
methods to find the domains with zero unstable roots (i.e., the stable regions). If
the number of unstable characteristic roots is known in one domain bounded by
the D-curves, then the stable domains can be traced back using the concept of root
crossing direction (see Chapter 3.4 in [60]). The number of unstable characteristic
roots can also be calculated using Stepan’s formulas (see Theorem 2.19. in [75]).

Hayes equation. This equation reads

ẋ(t) = ax(t) + bx(t− τ) . (2.99)

The D-curves are defined by the parametric curves

β = 0 : b = −a , (2.100)

βτ 6= kπ, k ∈ N : a =
β cos(βτ)

sin(βτ)
, b =

−β
sin(βτ)

(2.101)

in the parameter plane (a, b) with the running parameter β ∈ [0,∞) (for details,
see Chapter 2.1.1 of [29]). For this equation, the case τ = 1 is analyzed throughout
this thesis. The D-curves and the domain of stability are shown in Figure 2.6/A.
The D-curves are depicted with gray and black colors, and the stable domains are
indicated with gray shading and black borders.

Oscillator with two delays. This DDE has the form

ẍ(t) + ax(t) = bx(t− τ1) + bx(t− τ2) , (2.102)

where a > 0 is assumed. The D-curves are given by equations

−
(

2kπ

τ1 + τ2

)2

+ a− 2b(−1)k cos

(
kπ
τ1 − τ2

τ1 + τ2

)
= 0 , k ∈ Z , (2.103)

τ2 − τ1 −
2k + 1√

a
π = 0 , k ∈ Z . (2.104)

Details on derivation can be found at the end of Chapter 3.1 in [75]. Throughout
this thesis, parameters a = 6 and b = 1 are used, thus (2.102) is a special case of
(2.89), corresponding to ε = 0. The D-curves and the domain of stability are shown
in Figure 2.6/B.

Oscillator with distributed delay. The general form of this DDE is given by

ẍ(t) + ax(t) = b

∫ 0

−τ
γ(θ)x(t+ θ)dθ , (2.105)
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FIGURE 2.6: Exact stability charts with D-curves: A) Hayes equation, B) oscillator
with two delays, C) oscillator with distributed delay

where the weight function and the length of time history are chosen as γ(θ) =
π sin(πθ)/2 and τ = 1, respectively. The D-curves are given by

a = (kπ)2 − 1 + (−1)k

2(1− k2)
b , k ∈ Z \ {−1, 1} , (2.106)

b = 0 , k = ±1 . (2.107)

Proof and detailed description on the derivation of stable parameter domains can
be found in Theorem 3.26 in [75]. The D-curves and the domain of stability are
shown in Figure 2.6/C.

2.3.2 Exact value of the rightmost root

Throughout this chapter, the exact value of the rightmost characteristic root λcr in
any given point of the space of system parameters is determined using the corre-
sponding characteristic equation. After the substitution of λcr = αcr + iβcr for the
characteristic root, αcr and βcr can be determined by solving the system of non-
linear equations given by the real and imaginary parts of the characteristic equa-
tion. However, in general, a solution of this system of equations can only be found
by using some iterative numerical method. In order to calculate the rightmost root,
one should have a close enough initial guess. Here, and in the sequel, this initial
guess is produced by the results of the above presented PsT method. In particu-
lar, the root used as initial guess is the rightmost root taken from the results of the
PsT method after the relative error converged to a value close to machine precision.
The numerical solver used for the non-linear characteristic equation is the built-in
solver of the software Wolfram Mathematica 9. The Newton-Raphson method was
used, such that the precision goal was set to be the double of the precision of the so-
lution based on the PsT method. It has been experienced that starting the iteration
from the rightmost root produced by the PsT method, the numerical solution of
the characteristic equation gives practically the same result for all the investigated
points in the space of system parameters.

2.3.3 Methods under comparison

The PsT and SE methods are compared to two methods from the literature, namely,
the pseudospectral collocation (PsC) and the spectral Legendre tau (SLT) method.
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In this subsection these methods are briefly described.

Pseudospectral collocation (PsC) method. This method was first proposed by
Breda et al [11]. Later, Butcher and Bobrenkov [13] constructed an identical method
approaching the problem from the framework of continuous-time approximation
[79] and therefore called the technique Chebyshev spectral continuous-time ap-
proximation.

Similarly to the PsT method, the PsC method also approximates the OpDE form
(1.20) using the method of weighted residuals and enforces the boundary condition
using tau approximation. For the PsC method, base functions φj are Lagrange base
polynomials defined by the Lobatto-type Chebyshev nodes, which are given as

ζj = cos

(
(j − 1)π

n

)
, j = 1, . . . , n+ 1 . (2.108)

The main difference between the PsC and PsT methods is in the selection of the test
function set. The PsT method uses Legendre polynomials as test functions, while
the PsC method applies Dirac-delta functions in the form

ψi(ζ) = δ (ζ − ζi) , i = 1, . . . , n ; (2.109)

where δ denotes the Dirac-delta function and ζi are the nodes of interpolation
(the Lobatto-type Chebyshev nodes). Note that when using Dirac-delta functions
(2.109) as test functions, (2.3) is equivalent to the system of equations obtained by
setting the residual function (2.2) to zero at the nodes of interpolation.

The PsC method uses tau approximation and replaces the equation in (2.3) cor-
responding to ζ = 1 (that is the equation corresponding to i = n + 1) with the dis-
cretized boundary condition (2.7). Consequently, the final form of the approximate
system will be (2.17)–(2.20), again. Due to the Dirac-delta test functions, no integra-
tion is necessary which simplifies terms in (2.21)–(2.22) by one matrix-matrix multi-
plication. Furthermore, since the Dirac-delta functions are defined on the nodes of
interpolation, terms in (2.21)–(2.22) are simplified by one more matrix-matrix mul-
tiplication. Finally, the finite dimensional approximation G(t) of operator G(t) is
constructed from the sub-matrices

Gi,j(t) =

{
2
τ IDi,j i = 1, . . . , n ;

L(t)φj i = n+ 1 .
(2.110)

Note that for the calculation of G(t) no inversion and matrix multiplication are
necessary, in contrast with the PsT method.

Spectral Legendre tau (SLT) method. The SLT method was proposed by Vyasa-
rayani et al. [86] for first-order autonomous DDEs with constant delays. Similarly
to the PsT and PSC methods, the SLT method also approximates the OpDE form
(1.20) using the method of weighted residuals and enforces the boundary condi-
tion using tau approximation. The tau approximation is carried out in the same
way as for the PsT method, therefore the test functions are ψi = Pi−1, i = 1, . . . , n.
The, main difference between the PsT and SLT methods is in the base functions.
While the PsT method uses Lagrange base polynomials defined by the Chebyshev
nodes, the SLT method employs Legendre polynomials as base functions (that is
φj = Pj−1, j = 1, . . . , n + 1). Consequently, the integral terms in (2.18)–(2.19) can
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be calculated as

〈φj , ψi〉 = 〈Pj−1, Pi−1〉 , i = 1, . . . , n ; (2.111)〈
φ′j , ψi

〉
=
〈
P ′j−1, Pi−1

〉
, i = 1, . . . , n . (2.112)

Utilizing the identities and the orthogonality of Legendre polynomials (for details
see Appendix A.1), the integral terms in equations (2.111)–(2.112) can be computed
in closed form as

〈Pj−1, Pi−1〉 =
2

2j − 1
δi,j , (2.113)

〈
P ′j−1, Pi−1

〉
=


0 i > j ,

2 mod(j−i, 2) 6= 0 ,

0 mod(j−i, 2) = 0 ,

(2.114)

where δi,j is the Kronecker delta. The final form of the approximate system is given
again by (2.17)–(2.20), using the above formulas.

2.3.4 Results of comparison

The results of the comparison of the PsT, PsC, SLT and SE methods are given in
Tables 2.1-2.5. The approximate boundaries of stability were determined as fol-
lows. Eigenvalues λ̃ (or µ̃) of matrix G (or U) were computed for a series of system
parameters on an equidistant grid of a particular domain in the plane of system
parameters. Eigenvalues, having the largest real part λ̃cr (or largest absolute value
µ̃cr) were stored for each gridpoint. A 3-dimensional surface was fitted on these
eigenvalues over the parameter plane using the "contour" function of Matlab. The
approximate borders of stability were given by the zero-level curve (or level curve
at 1) of this 3-dimensional surface. Note that the efficiency of this algorithm can
be improved if only the critical eigenvalues are calculated (e.g. see [92]). Efficiency
could also be increased if non-uniform grid is used in the parameter plane (for such
methods see [9] and [5]).

The primary focus of this thesis is on the stability and stabilizability proper-
ties of delayed dynamical systems, therefore the precise calculation of the real part
of the rightmost characteristic exponent is of interest. Consequently, the conver-
gence of the approximation of the real part of the rightmost characteristic exponent
calculated by different numerical methods was investigated for parameter combi-
nations given in Table 2.1, without the consideration of the error of the imaginary
part. Note that corresponding to each characteristic multiplier, only the real part of
the characteristic exponent can be determined uniquely as

Re(λ) =
1

h
ln |µ| . (2.115)

In contrast, infinitely many imaginary parts of the characteristic exponent are in-
troduced for each characteristic multiplier according to

Im(λ) =
1

h

(
Im(µ)

Re(µ)

)
+
kπ

h
, k = 0,±1,±2, . . . (2.116)

Although the imaginary parts of the characteristic exponents do not effect stability,
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in physical systems their precise calculation can become important e.g. when calcu-
lating the dominant vibration frequencies occurring at the dynamic loss of stability.
However, due to the non-uniqueness of the imaginary part (2.116), the reconstruc-
tion of dominant vibration frequencies using methods based on the matrix approx-
imation of the monodromy operator (like the SE method) requires additional effort
(see e.g. [22]). As a result, when the imaginary parts of the characteristic exponents
of autonomous systems are also of interest, methods based on the approximation
of the infinitesimal generator (like the PsT, PsC and SLT methods) are preferred.

Table 2.2 presents the stability boundaries for the investigated DDEs using dif-
ferent methods with an increasing order n of approximation. It is observed, that the
convergence of stability boundaries is almost exactly the same for the PsT, the SE
and the SLT methods, while the PsC method has slower convergence for stability.

2.3 shows the real part of the error e = λ̃cr − λcr of the rightmost character-
istic exponent as a function of the order of approximation. Results show that the
SE method tends to have the highest rate while the PsC method tends to have the
lowest rate of convergence. It is interesting to note that the points corresponding
to the PsT method and the SLT method coincide for smaller n values. Their con-
vergence rates are close to that of the SE method in case of the Hayes equation and
the oscillator with distributed delay, while in case of the oscillator with two delays
their convergence rates are close to that of the PsC method. Although Table 2.3
shows the convergence rates only for the parameter combinations given in Table
2.1, the convergence rates were checked by the author in many other points. The
selected points show samples for the convergence rates which represent the typi-
cal convergence behavior of the analyzed methods. Tables 2.2-2.3 can be used for
the comparison of methods based on their convergence with respect to n. How-
ever, in practice the time necessary for the computation of the stability charts is
also important. Clearly, the time demand of a method depends on its realization
as a particular algorithm. A reliable base for comparison could be the number of
necessary floating point operations, however, such analysis is not performed in this
thesis. Here the computational demand of the methods is characterized by the time
necessary for the computation of stability charts.

Table 2.4 shows the computational time of stability charts using 200× 200 grid-
points on the plane of system parameters. The computational time is presented as
a function of approximation order for different equations and different methods.
For the calculation of stability charts, the software Matlab was used. During the
construction of Matlab codes the author strived to increase the efficiency evenly for
algorithms corresponding to the investigated methods in order to provide a base
for fair comparison. Based on the structure of the methods under comparison some
preliminary estimations can be made on their speed. In all four methods, the ma-
jority of computational time is spent on the determination of the eigenvalues of G
(for the PsT, PsC and SLT methods) or U (for the SE method). Note that the herein
presented algorithm calculates all the eigenvalues of these matrices, although for
stability only the critical eigenvalue is of interest. It is expected that the structure of
the matrix has no significant effect on the time of eigenvalue computation. How-
ever, the inversion of matrices Λ and N cost considerable time which has to be done
repeatedly in case of the SE method and once in case of the PsT and SLT method.
Note also that under updated system parameters the PsC method has to carry out
one less matrix-matrix multiplication compared to the other methods. This matrix
multiplication however, has small effect on the overall computational time. The re-
sults presented in Table 2.4 match with the above discussion, that is the SE method
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Hayes equation Osc. w. two delays Osc. w. distr. delay

a b τ1/π τ2/π a/π2 b/π2

A -10 5 1.2 0.9 10 -5

B -5 -10 2.4 1.1 18 18

C 0.5 -1 3 1.5 15 30

TABLE 2.1: Investigated points on the plane of system parameters

requires more computational effort, while the rest of the methods have similar com-
putational demand. In practice, a limit is set for the relative error of the real part of
the rightmost exponent and the order of approximation is increased until this limit
is reached. Therefore a more useful diagram can be constructed by the combination
of Table 2.3 and Table 2.4, which is shown in Table 2.5.

Table 2.5 shows parametric "curves" with the running parameter n on the plane
of computational time and error of the real part of the rightmost characteristic ex-
ponent. The farthest to the left a curve is placed on this plane the better time ef-
ficiency the corresponding method has. Note that while the computational time
corresponds to a stability chart, the error corresponds to a particular point of this
chart. It is therefore assumed that the time which is necessary for the calculation
of the exponents is the same in all points of the parameter plane. The results of
Table 2.5 show, that for the Hayes equation the PsT method, for the oscillator with
two delays the PsC method, while for the oscillator with distributed delay the SLT
method is the most time-efficient. The SE method has the least time-efficiency for
the investigated cases. Note, that the SE method can approximate only the real
parts of the exponents according to (2.115), therefore, it cannot be used for appli-
cations where the location of exponents is of interest on the complex plane (e.g.
continuous pole placement [61]). Also note that in case of pseudospectral methods
the variables of the discretized system are distinct points of the history function,
which can be advantageous in some applications. Furthermore, it should be men-
tioned that, to the best knowledge of the author, detailed theoretical convergence
analysis does not exist for the PsT and SE methods. However, for the PsC and the
SLT methods, precise theoretical convergence analysis is provided in [12] and in
[33], respectively.

2.4 Extension to hybrid systems

In digitally controlled mechanical systems (see e.g. [76]), the state variables in the
governing equations appear with piecewise constant arguments due to sampled
data hold in the feedback loop, which results in a hybrid system. In this thesis,
the terms with piecewise constant arguments will be referred as terms with discrete
delays. So far, this thesis have only considered delayed terms whose arguments
are continuous functions of time in the analyzed equations. In the following, these
terms will be referred as terms with continuous delays. Mathematical models in-
volving both discrete and continuous delays often arise in case of haptic devices
(see e.g. [40]) where mechanical systems are subjected to both human interaction
and digital feedback control. In these models, terms with continuous delay are
present due to the reflex delay of the human operator while terms with discrete de-
lay are originated from the sampling and actuation scheme of the digital controller.
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Hayes equation Osc. with two delays Osc. with distr. delay
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TABLE 2.2: Convergence of stability boundaries using different methods for dif-
ferent DDEs
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Hayes equation Osc. with two delays Osc. with distr. delay
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TABLE 2.3: The convergence of the real part of the rightmost exponent using dif-
ferent methods for different DDEs and system parameters according to Table 2.1

Hayes equation Osc. with two delays Osc. with distr. delay
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Hayes equation Osc. with two delays Osc. with distr. delay
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TABLE 2.5: Time efficiency of different methods for different DDEs and system
parameters according to Table 2.1
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Some further examples are also shown for hybrid time-delay systems in Section 3.2
from the field of machine tool vibrations. In these examples, the feed of the tool
is affected by the digital feedback controller of the workpiece-tool system which
results in terms with discrete delays, while a term with continuous delay is also
present due to the so-called regenerative effect of the cutting process [2, 74].

In spite of the many relevant applications of time-delay systems subjected to
digital feedback control, their numerical stability analysis is not well-established in
the engineering literature. In the following, the PsT and SE methods are extended
for the stability analysis of linear hybrid time-periodic time-delay systems of the
form

ξ̇(t)=A(t)ξ(t) +

v∑
p=1

Bp(t)ξ(t− τp) + Cξ(tl −∆t) + Eχl, t ∈ [tl, tl+1), (2.117)

χl=χl−1 +
ñ∑
b=1

Wbξ(tl − b∆t), (2.118)

with initial conditions

ξ(θ) = ξ0(θ), θ ∈ [−τ, 0], χ−1 = 0. (2.119)

In (2.117)–(2.118), a digital feedback controller is added to the open-loop system
(2.39). Note that although in (2.117) the terms with continuous delays contain only
constant delays (pointwise delays), DDEs involving distributed continuous delay
terms can also be approximated by (2.117) using numerical quadratures as detailed
in (2.40)–(2.43). The digital control applies state feedback via gain matrix C ∈ Rs×s
and the feedback of the integral χl ∈ Rs of the state via gain matrix E ∈ Rs×s.
The state is measured at each sampling instant tl + b∆t, l ∈ N, b = 1, 2, . . . , ñ;
while the control input is updated at time instants tl = l∆T , l ∈ N, where ∆t is
the sampling period and ∆T = ñ∆t is the actuation period, with ñ ∈ Z+ being
the number of samples between two control input updates. The control input is
held constant between the two endpoints of each actuation period in accordance
to a zero-order hold. In this thesis it is assumed that the calculation of the control
input is performed within one sampling period, therefore the state-feedback term
in (2.117) has a delay ∆t. In (2.118), the integral χl is computed numerically using
the latest ñ samples. Matrix Wb contains the weights of the numerical quadrature
used for integration.

In (2.117)–(2.118), ξ(t − τp), p = 1, 2, . . . , v are terms with continuous delays,
while ξ(tl − b∆t), l ∈ N, b = 1, 2, . . . , ñ are terms with discrete delays. Equations
(2.117)–(2.118) form a hybrid system consisting of a time-periodic delay-differential
equation (DDE) and a difference equation (DE). In case of a general choice for T and
∆T this system is quasi-periodic. In this thesis it is assumed that T/∆T = ε/ρ, with
ε, ρ ∈ Z+, thus Tp = ε∆T = ρT is the principal period of the system. For the case
s = 1, the sampling and actuation schemes are visualized in Figure 2.7, where the
control input function Q(t) is defined as

Q(t) = Cξ(tl −∆t) + Eχl t ∈ [tl, tl+1) , (2.120)

χl = χl−1 +

ñ∑
b=1

Wb ξ(tl − b∆t). (2.121)
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FIGURE 2.7: Visualization of sampling and actuation schemes for the case s = 1

The stability of (2.117)–(2.118) is determined by the characteristic multipliers of
the monodromy operator U(T ), which is now defined as

ηlTp = U(T )η(l−1)Tp , l = Z+, (2.122)

where

ηlTp =

[
ξlTp
χlε

]
. (2.123)

In the following, the hybrid system (2.117)–(2.118) is analyzed using the PsT and
SE methods.

2.4.1 PsT method

Using function segment ξt, (2.117) can be converted to the OpDE form

ξ̇t = G(t)ξt + Hξtl + Eχl−1, t ∈ [tl, tl+1) , (2.124)

where operators G(t), H and E are defined as

G(t)ξt =

{
A(t)ξt(0) +

∑v
p=1 Bp(t)ξt(−τp) θ = 0,

d
dθξt(θ) θ ∈ [−τ, 0),

(2.125)

Hξtl =

{
Cξtl(−∆t) + E

∑ñ
b=1 Wbξtl(−b∆t) θ = 0,

0 θ ∈ [−τ, 0),
(2.126)

Eχl−1 =

{
Eχl−1 θ = 0,

0 θ ∈ [−τ, 0).
(2.127)
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The introduction of function segment ξt reformulates (2.118) as

χl = χl−1 +
ñ∑
b=1

Wbξtl(−b∆t). (2.128)

The discretization of (2.117)–(2.118) is carried out according to the same steps
as detailed in Section 2.1. First, the solution segment ξt is approximated by its
Lagrange interpolant as ξ̃t in the form (2.8). Here, the nodes of interpolation are
chosen as the Chebyshev points of second kind (2.108). After the substitution of
(2.8) to (2.117), the equation is multiplied with test functions {ψi}ni=1 and integrated
over domain θ ∈ [−τ, 0] according to the standard steps of the weighted residual
method. The same way as in Section 2.1, test functions are chosen to be the Legen-
dre polynomials. The method of weighted residuals gives n independent equations
and the (n+ 1)-st equation is obtained from the pointwise satisfaction of (2.124) at
θ = 0. Consequently, the final form of the approximate system is given by

NẊ(t) = M(t)X(t) + HX(tl) + Lχl−1, t ∈ [tl, tl+1) , (2.129)
χl = χl−1 + DX(tl), (2.130)

where, after coordinate transformation ζ = 2θ/τ + 1, the sub-matrices of N, M(t)
are given by (2.23)–(2.24), with

L(t)φj = A(t)φk(1) +

v∑
p=1

Bp(t)φk(1− 2τp/τ). (2.131)

The sub-matrices of H ∈ Rs(n+1)×s(n+1), L ∈ Rs(n+1)×s, D ∈ Rs×s(n+1) and the
sub-vectors of X(t) ∈ Rs(n+1)×1 read

Hi,k =

{
0 i = 1, 2, . . . , n;

Cφk(1− 2∆t/τ) + E
∑ñ

b=1 Wbφk(1− 2b∆t/τ) i = n+ 1;
(2.132)

Li =

{
0 i = 1, 2, . . . , n;

E i = n+ 1;
(2.133)

Dk =

ñ∑
b=1

Wbφk(1− 2b∆t/τ), (2.134)

Xk(t) = ξ̃t (τ(ζk − 1)/2) . (2.135)

Similarly as in (2.1.6), the ODE (2.129) is further approximated using a piece-
wise constant approximation of M(t) in order to obtain a matrix approximation for
the monodromy operator. In particular, the actuation period ∆T is split onto m̃
intervals and M(t) is averaged as

M̃l,u =
1

∆t̃

∫ ∆t̃

0
M
(
(lm̃+ u− 1)∆t̃+ t

)
dt, (2.136)

where now ∆t̃ = ∆T/m̃ with m̃ ∈ Z+ and u = 1, 2, . . . , m̃; l = 0, 1, . . . , ε − 1. This
way, the time-periodic ODE (2.129) is approximated on t ∈ [0, Tp) with the series of
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autonomous ODEs

N ˙̃Xl,u(t) = M̃l,uX̃
l,u(t) + HX̃l,1(lm̃∆t̃) + Lχ̃l−1,

t ∈
[
(lm̃+u−1)∆t̃, (lm̃+u)∆t̃

)
, (2.137)

X̃l,u((lm̃+u−1)∆t̃) = X̃l,u−1((lm̃+u−1)∆t̃), (2.138)

and
χ̃l = χ̃l−1 + DX̃l,1(lm̃∆t̃), (2.139)

with l = 0, . . . , ε − 1. Here, X̃l,u(t) is the approximation of X(t) in the domain
t ∈

[
(lm̃+u−1)∆t̃, (lm̃+u)∆t̃

)
. Equations (2.136)–(2.139) result in the discrete

mapping
Yl+1 = ΦlYl, l = 1, 2, . . . , ε− 1; (2.140)

between the two endpoints of actuation periods (that is between time instants tl
and tl+1), where

Yl =

[
X̃l,1(lm̃∆t̃)

χ̃l−1

]
, Φl =

[
αl βl

D I

]
(2.141)

and

αl = Jl + Kl,m̃N−1H, (2.142)

βl = Kl,m̃N−1L, (2.143)

while
Jl = eG̃l,m̃eG̃l,m̃−1 · · · eG̃l,1 , (2.144)

and Kl,m̃ is defined by the recurrence relation

Kl,u = eG̃l,uKl,u−1 + ∆t̃
(

eG̃l,u − I
)

G̃−1
l,u , (2.145)

with
Kl,0 = 0, G̃l,u = ∆t̃N−1M̃l,u . (2.146)

Finally, the matrix approximation of the monodromy operator is

U = Φε−1Φε−2 · · ·Φ0 . (2.147)

2.4.2 SE method

Introduce the solution segment

z(θ) =

{
ξ0(θ) if θ ∈ [−τ̂ , 0],

ξ(θ) if θ ∈ (0, Tp],
(2.148)

and accommodate the definition of Γ in (2.44) as

Γ =


floor

(
max(τ,Tp)

Tp

)
if mod (max(τ, Tp), Tp) = 0,

floor
(

max(τ,Tp)
Tp

)
+ 1 otherwise,

(2.149)
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then the original problem (2.117)–(2.118) can be converted to the operator equation
difference equation (OpE-DE) system

A z− b = 0, (2.150)

χε−1 = χ−1 +
ε−1∑
a=0

ñ∑
b=1

Wbz (a∆T − b∆t) , (2.151)

where operator A is defined as

A z =

ż(t)−A(t)z(t)−
v∑
p=1

Bp(t)z(t− τp)−Cz(tl −∆t)

−E
l∑

a=0

ñ∑
b=1

Wbz(a∆T − b∆t) : t ∈ [tl, tl+1) , l = 0, 1, . . . , ε− 1

}
(2.152)

and function segment b is given by

b =
{
Eχ−1 : t ∈ [0, Tp)

}
. (2.153)

The solution segment z is then split onto (Γ + 1)Eρ number of equidistant subseg-
ments (elements) as

zk = {z(t) : t ∈ [(k − 1)h, kh)} , k = −ΓEρ+ 1,−ΓEρ+ 2, . . . , Eρ; (2.154)

with h = T/E being the element length. This transforms (2.150)–(2.151) to

Skzk −
v∑
p=1

Qk,pzk−rp−1 −
v∑
p=1

Rk,pzk−rp

−
lk∑

l=lk−1

Pk,lzdlñ−1 +

(l+1)ñ∑
e=1

T k,l,e−ñ−1zde−ñ−1

−b̃χ−1 =0, k=1, 2, . . . , Eρ; (2.155)

χε−1 = χ−1 +

εñ∑
e=1

Wñ−mod(e−1,ñ)z
de−ñ−1((e−ñ−1)∆t), (2.156)

where the operators related to the continuous terms are defined according to (2.50)–
(2.52), while operators related to the discrete terms are given as

Pk,lzdlñ−1 =

{
Czdlñ−1(l∆T−∆t) if t ∈

[
κk,l1 , κk,l2

)
,

0 otherwise,
(2.157)

T k,l,e−ñ−1zde−ñ−1 ={
EWñ−mod(e−1,ñ)z

de−ñ−1((e−ñ−1)∆t) if t ∈
[
κk,l1 , κk,l2

)
,

0 otherwise,
(2.158)

and b is divided onto function subsegments as

b̃ = {E : t ∈ [(k − 1)h, kh)} , (2.159)
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with

κk,l1 =


(k − 1)h l = lk−1 ,

(k − 1)h+ ∆T (l − lk−1)− γk−1 lk−1 < l < lk ,

kh− γk l = lk ,

(2.160)

κk,l2 =

{
(k − 1)h+ ∆T (l + 1− lk−1)− γk−1 lk−1 ≤ l < lk ,

kh l = lk
(2.161)

and

rp =

{
floor

( τp
h

)
− 1 if mod(τp, h) = 0,

floor
( τp
h

)
otherwise,

ϑp =

{
h if mod(τp, h) = 0,

mod(τp, h) otherwise,

(2.162)

lk = floor

(
kh

∆T

)
, γk = mod(kh,∆T ) , de = floor

(
e∆t

h

)
+ 1. (2.163)

The continuity between solution subsegments (2.154) is provided by boundary con-
ditions

zk+1(kh) = zk(kh), k = −ΓEρ+ 1,−ΓEρ+ 2, . . . , Eρ− 1. (2.164)

After applying the elementwise coordinate transformation (2.54) and dropping in-
dex k immediately (since ζk ∈ [−1, 1), ∀ k), equations (2.156)–(2.159) and (2.164) are
transformed as follows

χε−1 =χ−1 +
εñ∑
e=1

Wñ−mod(e−1,ñ)z
de−ñ−1(1−ν̃e−ñ−1), (2.165)

Pk,lzdlñ−1 =

{
Czdlñ−1(1−ν̃lñ−1) if ζ ∈

[
κ̃k,l1 , κ̃k,l2

)
,

0 otherwise,
(2.166)

T k,l,e−ñ−1zde−ñ−1 ={
EWñ−mod(e−1,ñ)z

de−ñ−1(1−ν̃e−ñ−1) if ζ ∈
[
κ̃k,l1 , κ̃k,l2

)
,

0 otherwise,
(2.167)

b̃ ={E : ζ ∈ [−1, 1)} , (2.168)

and

zk+1(−1) = zk(1), k = −ΓEρ+ 1,−ΓEρ+ 2, . . . , Eρ− 1; (2.169)
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respectively, where

κ̃k,l1 =


−1 l = lk−1 ,

−1 + ∆T̃ (l − lk−1)− γ̃k−1 lk−1 < l < lk ,

1− γ̃k l = lk ,

(2.170)

κ̃k,l2 =

{
−1 + ∆T̃ (l + 1− lk−1)− γ̃k−1 lk−1 ≤ l < lk ,

1 l = lk
(2.171)

and

∆T̃ =
2∆T

h
, γ̃k =

2γk
h
, ϑ̃p =

2ϑp
h
, ν̃e =

2 (deh− e∆t)
h

. (2.172)

In each element, the SE method approximates solution subsegments (2.154) with
their Lagrange interpolants according to (2.59), where the nodes of interpolation
are given by the Lobatto-type Legendre-Gauss quadrature. The system of operator
equations (2.155) is then multiplied with test functions {ψi}ni=1 and integrated over
the domain ζ ∈ [−1, 1] according to the standard steps of the weighted residual
method. For the SE method, the test functions are chosen as the Legendre polyno-
mials up to degree n − 1. With the above considerations equations (2.155), (2.165)
and (2.169) are discretized as

n+1∑
j=1

Ski,j z̃k,j =
v∑
p=1

n+1∑
j=1

(
Qk,p
i,j z̃k−rp−1,j + Rk,p

i,j z̃k−rp,j

)

+

lk∑
l=lk−1

n+1∑
j=1

Pk,l
i,j z̃dlñ−1,j +

(l+1)ñ∑
e=1

Tk,l,e−ñ−1
i,j z̃de−ñ−1,j

+ b̃iχ̃−1,

i = 1, 2, . . . , n; k = 1, 2, . . . , Eρ; (2.173)

χ̃ε−1 = χ̃−1 +

εñ∑
e=1

n+1∑
j=1

W̃e−ñ−1,j z̃de−ñ−1,j , (2.174)

and
z̃k+1,1 = z̃k,n+1, k = −ΓEρ+ 1,−ΓEρ+ 2, . . . , Eρ− 1; (2.175)

respectively, where the matrices related to continuous terms are given by (2.65)–
(2.67) and the matrices related to discrete terms read as

Pk,l
i,j = Cφj(1−ν̃lñ−1)

∫ κ̃k,l2

κ̃k,l1

ψi(ζ)dζ , (2.176)

Tk,l,e−ñ−1
i,j = EW̃e−ñ−1,j

∫ κ̃k,l2

κ̃k,l1

ψi(ζ)dζ , (2.177)

b̃i = E

∫ 1

−1
ψi(ζ)dζ , (2.178)

W̃e−ñ−1,j = Wñ−mod(e−1,ñ)φj(1−ν̃e−ñ−1) . (2.179)
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Note that

lk∑
l=lk−1

(l+1)ñ∑
e=1

Tk,l,e−ñ−1
i,j =

(lk−1+1)ñ∑
e=1

T∗ e−ñ−1
i,j +

lk∑
l=lk−1+1

(l+1)ñ∑
e=lñ+1

T̃k,l,e−ñ−1
i,j , (2.180)

where

T∗ e−ñ−1
i,j = EW̃e−ñ−1,j

∫ 1

−1
ψi(ζ)dζ , (2.181)

T̃k,l,e−ñ−1
i,j = EW̃e−ñ−1,j

∫ 1

κ̃k,l1

ψi(ζ)dζ , (2.182)

which simplifies the numerical evaluation of the integral term (2.177). The numer-
ical evaluation of the integral terms in (2.65)–(2.67), (2.176), (2.178) and (2.181)–
(2.182) give (2.68)–(2.70) for the continuous terms and

Pk,l
i,j = Cφj(1−ν̃lñ−1)

κ̃k,l2 − κ̃
k,l
1

2

n+1∑
q=1

ψi

(
κ̃k,l2 −κ̃

k,l
1

2 ζ∗q +
κ̃k,l2 +κ̃k,l1

2

)
wq , (2.183)

b̃i = E

n+1∑
q=1

ψi
(
ζ∗q
)
wq , (2.184)

T∗ ei,j = EW̃e,j

n+1∑
q=1

ψi
(
ζ∗q
)
wq , (2.185)

T̃k,l,e
i,j = EW̃e,j

1− κ̃k,l1

2

n+1∑
q=1

ψi

(
1−κ̃k,l1

2 (ζ∗q + 1) + κ̃k,l1

)
wq , (2.186)

for the discrete terms. The non-zero parts of the matrix approximation
U ∈ Rs(2+EρΓn)×s(2+EρΓn) of the monodromy operator are given by

U (1 :sEρ(Γ−1)n, sEρn+1:sEρΓn) = I, (2.187)

U (sEρ(Γ−1)n+1:2s+sEρΓn, :) = Λ−1Υ, (2.188)

where the non-zero parts of matrix Λ ∈ Rs(2+Eρn)×s(2+Eρn) are calculated as

Λ (1 :s, 1:s) = I, (2.189)
Λ (s+s(k−1)n+1:s+skn, 1:s+sEρn) = Λk, k = 1, 2, . . . , Eρ; (2.190)

Λ (s+sEρn+1:2s+sEρn, 1:s+sEρn) = ΛW , (2.191)
Λ (s+sEρn+1:2s+sEρn, s+sEρn+1:2s+sEρn) = I, (2.192)

with

Λk = ΛS
k +

v∑
p=1

(
ΛQ,p
k +ΛR,p

k

)

+

lk∑
l=lk−1

ΛP
k,l+

(lk−1+1)ñ∑
e=1

ΛT ∗
e−ñ−1+

lk∑
l=lk−1+1

(l+1)ñ∑
e=lñ+1

ΛT̃
k,l,e−ñ−1, (2.193)
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ΛW =
εñ∑
e=1

ΛW
e−ñ−1, (2.194)

where ΛS
k , ΛQ,p

k , ΛR,p
k are computed according to (2.84)–(2.86) and

ΛP
k,l (:, s(dlñ−1−1)n+1:s+sdlñ−1n) =

[
−Pk,l

i,j

]n,n+1

i=1,j=1
, if dlñ−1 ≥ 1, (2.195)

ΛT ∗
e (:, s(de−1)n+1:s+sden) =

[
−T∗ ei,j

]n,n+1

i=1,j=1
, if de ≥ 1, (2.196)

ΛT̃
k,l,e (:, s(de−1)n+1:s+sden) =

[
−T̃k,l,e

i,j

]n,n+1

i=1,j=1
, if de ≥ 1, (2.197)

ΛW
e (:, s(de−1)n+1:s+sden) =

[
−W̃e,j

]n+1

j=1
, if de ≥ 1. (2.198)

The non-zero parts of matrix Υ ∈ Rs(2+nEρ)×s(2+nEρΓ) are calculated as

Υ (1 :s, sEρΓn+1:s+sEρΓn) = I, (2.199)
Υ (s+s(k−1)n+1:s+skn, 1:s+sEρΓn) = Υk, k = 1, 2, . . . , Eρ; (2.200)

Υ (s+s(k−1)n+1:s+skn, s+sEρΓn+1:2s+sEρΓn)=
[
b̃i

]n+1

i=1
, k=1, 2, . . . , Eρ;

(2.201)

Υ (s+sEρn+1:2s+sEρn, 1:s+sEρΓn) = ΥW , (2.202)
Υ (s+sEρn+1:2s+sEρn, s+sEρΓn+1:2s+sEρΓn) = I, (2.203)

with

Υk =
v∑
p=1

(
ΥQ,p
k +ΥR,p

k

)

+

lk∑
l=lk−1

ΥP
k,l+

(lk−1+1)ñ∑
e=1

ΥT ∗
e−ñ−1+

lk∑
l=lk−1+1

(l+1)ñ∑
e=lñ+1

ΥT̃
k,l,e−ñ−1, (2.204)

ΥW =
εñ∑
e=1

ΥW
e−ñ−1, (2.205)

where ΥQ,p
k , ΥR,p

k are calculated according to (2.87)–(2.88) and

ΥP
k,l (:, s(EρΓ+dlñ−1−1)n+1:s+s(EρΓ+dlñ−1)n)=

[
Pk,l
i,j

]n,n+1

i=1,j=1
, if dlñ−1<1,

(2.206)

ΥT ∗
e (:, s(EρΓ+de−1)n+1:s+s(EρΓ+de)n)=

[
T∗ ei,j

]n,n+1

i=1,j=1
, if de<1, (2.207)

ΥT̃
k,l,e (:, s(EρΓ+de−1)n+1:s+s(EρΓ+de)n)=

[
T̃k,l,e
i,j

]n,n+1

i=1,j=1
, if de<1, (2.208)

ΥW
e (:, s(EρΓ+de−1)n+1:s+s(EρΓ+de)n)=

[
W̃e,j

]n+1

j=1
, if de<1. (2.209)

In summary, the steps of the computation of U are the following. First, the param-
eters in (2.149), (2.162)–(2.163) and (2.170)–(2.172) are calculated, then the terms in
(2.68)–(2.70) and (2.183)–(2.186) are computed for all indices. Thereafter matrices Λ
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and Υ are assembled according to (2.189)–(2.198) and (2.199)–(2.209), respectively.
Finally, the matrix approximation U of the monodromy operator is constructed as
(2.187)–(2.188).
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2.5 New results

I have introduced the pseudospectral tau method for the finite-dimensional ap-
proximation of linear delay-differential equations. The results are summarized as
follows.

Thesis 1

The pseudospectral tau (PsT) method can be used for the finite-dimensional approximation
of delay-differential equations of the form

ξ̇(t)=A(t)ξ(t)+
v∑
p=1

Bp(t)ξ(t−τp(t)) +
m∑
b=1

∫ −σb
−σb−1

γb(t, θ) ξ (t+θ)dθ,

with a system of ordinary differential equations. Based on the results of numerical experi-
ments, the following statements can be made.

1) The stability properties of the approximating system of ordinary differential equations
converge to the stability properties of the above equation with respect to the increase
of polynomial order: the stability boundaries converge to the exact ones for both au-
tonomous and non-autonomous systems; the real part of the rightmost root converges
for autonomous systems.

2) For the Hayes equation and for the oscillator with distributed delay, the convergence
rate of the PsT method with respect to the increase of the polynomial degree shows the
same convergence order as the spectral element (SE) and the spectral Legendre-tau
(SLT) methods, while it has better convergence order than that of the pseudospec-
tral collocation (PsC) method. For the oscillator with two delays, the SE has better
convergence order than that of the PsC, SLT and PsT methods.

3) Considering the computation time of the stability diagrams of the Hayes equation,
oscillator with two delays, and oscillator with distributed delay, the time-need of the
PsT method is less than that of the SE method, same as that of the SLT method and
higher than that of the PsC method.

Related publications: [26, 44, 50]
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I have generalized the spectral element method for linear systems with time-
periodic coefficients and distributed delays and derived explicit formulas for the
matrix approximation of the monodromy operator. The results are summarized as
follows.

Thesis 2

The spectral element method can be extended for the stability analysis of time-periodic delay-
differential equations of the form

ξ̇(t)=A(t)ξ(t) +
v∑
p=1

Bp(t)ξ(t−τp) +
m∑
b=1

∫ −σb
−σb−1

γb(t, θ) ξ (t+θ)dθ.

Explicit formulas can be determined for the calculation of the matrix approximation U
of the monodromy operator of this dynamical system. Using these formulas, U can be
composed for arbitrary time-periodic coefficient matrices A(t), Bp(t), γb(t, θ). According
to numerical experiments, the stability boundaries determined by the method converge with
respect to the increase of the polynomial order.

Related publications: [43, 48]
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I have extended both the pseudospectral tau and the spectral element methods
for the stability analysis of linear time-periodic hybrid systems with both continuous-
time delay (point delay) and discrete-time delay (terms with piecewise constant
arguments). The results are summarized as follows.

Thesis 3

The pseudospectral tau and the spectral element methods can be applied for the calculation
of the matrix approximation of the monodromy operator of time-periodic hybrid time delay
systems of the form

ξ̇(t)=A(t)ξ(t)+
v∑
p=1

Bp(t)ξ(t−τp)+Cξ(tl−∆t)+Eχl, t∈ [tl, tl+1),

χl=χl−1 +

ñ∑
q=1

Wbξ(tl − b∆t),

where tl = lñ∆t and l ∈ N. Based on numerical experiments, both methods converge to
the same stability boundaries with respect to the increase of polynomial order.

Related publications: [49]
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Chapter 3

Applications to machine tool
chatter

Machine tool chatter is the large amplitude vibration between the tool and the
workpiece involving intermittent loss of contact. These large amplitude vibrations
are harmful to the machining process since they increase the tool wear, lead to poor
surface quality or even damage the tool. Since the pioneering work of Tobias and
Tlusty [83, 84], the most commonly accepted explanation for chatter is the so-called
regenerative effect [2, 69, 74]. In fact, in many publications machine tool chatter is
referred to as regenerative chatter. The main point of the regenerative phenomenon
is that the cutting force is determined by both the current and the delayed positions
of the tool. For turning processes, the tool cuts the surface which was modulated
by the tool one revolution earlier. For milling processes, the cutting edge cuts the
surface which was modulated by the previous cutting edge one tooth-pass period
earlier. In the next tooth-pass these vibration marks generate further undulations
of the tool–workpiece system. Due to the hereditary nature of the regenerative
phenomenon, the equations of motion of the machine-tool-workpiece system are
governed by a system of delay-differential equations (DDEs).

In Computer Numerical Control (CNC) systems machining parameters are usu-
ally selected rather conservatively in order to avoid chatter and its detrimental ef-
fects. Consequently, CNC systems often use sub-optimal machining parameters
which results in decreased productivity. This limitation in machining systems has
led to a large body of research on increasing productivity while avoiding chatter vi-
brations. As a result, chatter prediction, avoidance and control has become an im-
portant research field and the last decade has seen a steady increase in the number
of the corresponding publications [69]. Many of these publications are concerned
with the identification of chatter-free regimes in the process parameter space. One
tool that has been extensively used to illustrate these regimes is the stability lobe
diagram (SLD). SLDs chart the domains of technological parameters where the sta-
tionary cutting operation remains stable for small perturbations. In order to in-
crease the reliability of the SLDs and to account for cutting process uncertainties
and parameter shifts, several SLDs may need to be reconstructed at different stages
of the cutting process. Furthermore, SLDs need to be recalculated when passive
[59, 73, 91] or active [17, 65] chatter control strategies are applied. The latter is
necessitated by the repeated tuning of the control parameters which requires fast
computation of the SLDs. Consequently, it is important to seek fast algorithms for
the calculation of SLDs. Some of the existing numerical and semi-analytical meth-
ods for the stability analysis of machining operations include the multi-frequency
solution [3, 6], semi-discretization [29, 30], full-discretization [18, 20, 55, 70], numer-
ical integration [19], Runge-Kutta methods [66] and numerical simulation [94]. In
many of these methods, the primary concern has been the accuracy and the range
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of application of the approach.
Note that the spectral element (SE) method approximates an infinite dimen-

sional difference equation (DE) ((1.3) evaluated at t = T ), while the methods com-
pared with the SE method in Section 2.3 approximate the infinite dimensional dif-
ferential equation (1.20) with their finite dimensional approximations (2.5). For
autonomous DDEs, Table 2.5 shows that those approximating (1.20), in most cases,
have better efficiency than the SE method. On the other hand, for time-periodic
DDEs those methods which are based on (1.20), have to apply additional discretiza-
tion steps in order to express the monodromy operator (as it was shown for the
pseudospectral tau (PsT) method in Section 2.1.6). This results in the increased
computational need of the methods based on (1.20). In particular, the SE method
always obtains the monodromy operator in a single step, while e.g. for (2.36) the
PsT method needs m̃ = 20 steps in order to have accurate results. Motivated by
the need for taking the speed of SLD computations into consideration, this chap-
ter presents an efficient application of the SE method to the calculation of SLDs of
milling processes. Since milling processes are described by time-periodic DDEs,
the application of methods based on (1.20) are not detailed here because they have
inferior convergence properties. A comparison between the SE method and the
most widespread time-domain methods of the machining literature is carried out
based on the efficiency of SLD calculations.

Without the consideration of the regenerative phenomenon, the available maxi-
mum depth of cut and maximum spindle speed depends mainly on the limitations
of the machine tool structure and the spindle unit of the machining center. How-
ever, the occurrence of regenerative chatter gives an additional limitation (visual-
ized by SLDs) to the maximum depth of cut and maximum spindle speed. Conse-
quently, even with the accurate identification of SLDs, chatter still gives a limitation
to the full utilization of the capacity of machining centers. As a result, it has been a
subject of great interest in the machining literature how the stable domains in SLDs
can be increased (thus chatter can be suppressed). There exist passive [73, 82], semi-
active [59, 93] and active [17, 65, 72] methods for the suppression of machine tool
chatter.

Active chatter suppression techniques aim to reduce chatter vibrations by build-
ing an additional controller or control loop to the spindle or to the tool. Practical
realizations of the control system, however, involve implementation imperfections.
In case of digital control, the sampling effect attributes an intermittent dynamics to
the otherwise continuous–time system. This results in a hybrid system involving
terms with continuous delay and terms with discrete delay in the governing equa-
tions [47, 52]. Also, the control loop involves feedback delays which may interfere
with the regenerative delay of the system. Note that for high-speed machining op-
erations, the tooth passing frequency and the natural frequencies of the spindle are
in the region of the sampling frequency of the controller. Consequently, the model-
ing of the sampling effect and the delay of the feedback loop can have importance.
However, apart from some studies [47, 53], most existing models of active chatter
suppression neglect the sampling effect and the delay of the feedback loop. Such
study has not yet been presented for milling, mostly due to the required high com-
putational effort of the stability analysis based on the existing standard methods of
the literature. In this chapter the PsT and SE methods are applied for the stability
analysis of the mathematical models of machining processes subjected to digital
position control.
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3.1 Milling operations

This subsection presents the extension of the SE method and its application to the
stability analysis of the most common models of milling processes. Furthermore, a
comparison of the SE method with the most widespread time-domain methods of
the engineering literature is presented in terms of the efficiency of SLD computa-
tions.

3.1.1 Milling models

First, the most common mathematical models of machine tool chatter in milling
operations are briefly reviewed. Throughout this thesis, milling is assumed with
straight-fluted tools and uniformly-distributed cutting teeth and the mechanical
models utilize the circular tooth path approximation. The variational systems of
the stationary motions of single- and two-degree-of-freedom (DoF) models are pre-
sented. These models are often applied in the machining literature [18–21, 32, 55,
66, 70]. The derivation of the below given equations is not described here but can
be found in Chapters 5.2.1 and 5.2.4 of [29].

In both the single and two DoF cases, equations determining the stability of the
stationary motion are given in the form

ξ̇(t) = A0ξ(t)−B(t)ξ(t) + B(t)ξ(t− τ), (3.1)

where ξ ∈ Rs, with s/2 being the DoF of the model, B(t) = B(t + τ) for all t time
instances. In the case of a tool with uniformly distributed cutting teeth, the princi-
pal period is the tooth passing period τ = 60/(Ωv), and matrix B(t) is constructed
as

B(t) =
v∑
p=1

Bp(t). (3.2)

The spindle speed of the tool, measured in rpm, is denoted by Ω and the number
of cutting teeth is given by v. For the single and two DoF models, state vector ξ(t)
and matrices A0 and Bp(t) are different, as will be shown in the following.

One DoF model. For the single DoF model, the state vector and the system ma-
trices are

ξ(t) =

[
ξ(t)

ξ̇(t)

]
, A0 =

[
0 1

−ω2
n −2ζωn

]
, Bp(t) = w̃

[
0 0

Hp(t) 0

]
, (3.3)

where ζ is the damping ratio (with the assumption of proportional damping) and
ωn is the natural angular frequency of the system, while w̃ = wqcf

qc−1
N Kn/mt de-

notes the specific cutting force coefficient, with w being the depth of cut, mt being
the modal mass of the tool, Kn being the normal cutting force coefficient, qc being
the cutting force exponent and fN = vfτ being the nominal feed rate. The feed ve-
locity is denoted by vf . Note that qc cutting force exponent assumes that the cutting
forces are calculated according to a power law (for more details see [39] or (3.32)–
(3.33)). However, it is important to mention that cutting force characteristic other
than power law also exist in the literature [77]. State variable ξ(t) is a perturbation
around the periodic stationary motion x̄(t) of the tool relative to the workpiece,
thus the motion of the tool is described by x(t) = x̄(t) + ξ(t). Here, we assume that
the vibrations are parallel to the feed and x gives the position of the tip of the tool.
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The dimensionless specific cutting force coefficient corresponding to tooth p is

Hp(t) = gp(t) sinqc(ϕp(t)) (Kr cos(ϕp(t)) + sin(ϕp(t))) , (3.4)

which is a periodic function with principal period τ . The cutting force coefficient
ratio is Kr = Kt/Kn, where Kt denotes the tangential cutting force coefficient. In
(3.4), the functions

ϕp(t) = (2πΩ/60)t+ (p− 1)2π/v, p = 1, 2, . . . , v (3.5)

give the angular displacements of the cutting teeth for the case of uniformly dis-
tributed cutting teeth and the window function

gp(t) =

{
1 if ϕent ≤ mod(ϕp(t), 2π) ≤ ϕex,

0 otherwise,
(3.6)

determines whether the pth tool is in or out of the cut, respectively. For up-milling,
the tool’s angle of entrance is ϕent = 0 and its angle of exit is ϕex = arccos(1 −
2ae/D), where ae is the radial immersion, D is the diameter of the tool, and their
ratio ae/D is the radial immersion ratio. For down-milling, ϕent = arccos(2ae/D−1)
and ϕex = π.

Note that when qc = 1 and H(t) =
∑v

p=1Hp(t) ≡ 1, equation (3.1) with (3.3)
gives the variational system of the standard single DoF model of turning processes
(see Chapter 5.1.2 of [29]). This occurs for full immersion (ae/D = 1) milling when
the number of teeth is v = 4. Consequently, with respect to linear stability analysis,
the standard model of turning processes is incorporated in (3.1) and (3.3).

Two DoF model. In case of the two DoF model, the state vector and the system
matrices are

ξ(t) =


ξ(t)

η(t)

ξ̇(t)

η̇(t)

 , A0 =

[
0 I

−K −C

]
, Bp(t) = w̃

[
0 0

Hp(t) 0

]
, (3.7)

where

K = ω2
n I , C = 2ζωn I , Hp(t) = gp(t) sinqc−1(ϕp(t)) Tp(t) Kc QT

p (t), (3.8)

with I being a 2×2 identity matrix and

Tp(t) =

[
cos(ϕp(t)) sin(ϕp(t))

− sin(ϕp(t)) cos(ϕp(t))

]
, Kc =

[
Kr

1

]
, Qp(t) =

[
sin(ϕp(t))

cos(ϕp(t))

]
. (3.9)

The motion of the tool is described by the vector[
x(t)

y(t)

]
=

[
x̄(t)

ȳ(t)

]
+

[
ξ(t)

η(t)

]
(3.10)
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where ξ(t) and η(t) define a perturbation around the stationary motion given by
x̄(t) and ȳ(t). Here x(t) and y(t) describe the tool’s motion parallel to and perpen-
dicular to the feed velocity, respectively. It is assumed that the modal parameters
are the same in x and y directions.

3.1.2 Application of the SE method

Several papers can be found in the engineering literature on the SE method [36–38,
48]. However, these papers all deal with DDEs where the time-varying coefficients
are continuous functions of time. In contrast, milling is a system where the time-
periodic parameters have state-independent discontinuities caused by the periodic
entrance and exit of the cutting teeth. Due to these discontinuities, a further exten-
sion of the SE method is needed in order to apply it efficiently to milling models.
In the following, the SE method is applied to (3.1) and it is shown that without the
special treatment of jumps in the time-periodic coefficients, the numerical method
is inefficient.

The governing equation (3.1) is a specific case of (2.39), thus its discretization
can be carried out with the SE method according to Section 2.2. The discretized
system (2.64) simplifies to

S0
i,j z̃k−1,n+1 +

n+1∑
j=2

S0
i,j z̃k,j + Rk

i,j z̃k−1,n+1 −Rk
i,j z̃k−E−1,n+1

+

n+1∑
j=2

Rk
i,j (z̃k,j − z̃k−E,j) = 0, i = 1, 2, . . . n; k = 1, 2, . . . , E; (3.11)

where the application of Lobatto-type Legendre-Gauss quadrature for integration
and interpolation leads to sub-matrices

S0
i,j =

∫ 1

−1

(
2

h
Iφ′j(ζ)−Aφj(ζ)

)
ψi(ζ)dζ =

2

h
I
n+1∑
q=1

Fi,qDq,j −A0Fi,j , (3.12)

Rk
i,j =

∫ 1

−1
B
(
h(ζ+1)

2 +(k−1)h

)
φj(ζ)ψi(ζ)dζ ≈ Fi,jBk

j . (3.13)

Here Fi,q and Dq,l are defined according to Section 2.1.3 and 2.1.1, respectively and

Bk
j = B

(
h(ζ∗j+1)

2 +(k−1)h

)
. (3.14)

Using (3.11), a mapping can be constructed according to (2.77)–(2.88), with Ski,j =

S0
i,j + Rk

i,j . Note that since Γ = 1, the identity part (2.77) of the matrix approxima-
tion U ∈ Rs(En+1)×s(En+1) of the monodromy operator shrinks to zero size. The
computation of matrices Λ and Υ simplifies to

Λ = Λ0 + ΛS0 + ΛR, Υ = Υ0 + ΥR, (3.15)

where the structure of ΛS0 , ΛR and ΥR is shown in Figure 3.1, while the structure
of matrices Λ0 and Υ0 is given in (2.98).

Note that during the calculation of the SLDs, (3.14) has to be reevaluated in
E(n+ 1) number of quadrature points each time Ω is updated. The reason for this
is that in (3.14) the argument of function B(t) incorporates h = τ/E = 60/(ΩvE).
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FIGURE 3.1: A schematic of the structure of matrices ΛS0 , ΛR and ΥR.

mt 0.03993 kg

ωn 922× 2π rad/s

ζ 0.011

qc 1

Kt 6× 108 N/m2

Kn 2× 108 N/m2

v 2

TABLE 3.1: Parameters used throughout Section 3.1, chosen according to [32]

Since the reevaluation of (3.14) is time consuming, the dependence of (3.14) on Ω is
need to be eliminated. This is done by the introduction of the angle domain with
variable θ = 2πΩt/60 instead of the time domain with variable t, which transforms
(3.1) to

ξ′(θ) = Â0ξ(θ)− B̂(θ)ξ(θ) + B̂(θ)ξ(θ − 2π/v), (3.16)

where now �′ denotes differentiation with respect to θ and

B̂(θ) =
v∑
p=1

B̂p(θ), (3.17)

with matrices

Â0 =

[
0 1

−1/Ω2
d −2ζ/Ωd

]
, B̂p(θ) =

wd

Ω2
d

[
0 0

Hp(θ) 0

]
(3.18)

and

Â0 =

[
0 I

− 1
Ω2

d
I − 2ζ

Ωd
I

]
, B̂p(θ) =

wd

Ω2
d

[
0 0

Hp(θ) 0

]
(3.19)

for the single and two DoF models, respectively. The dimensionless spindle speed
is denoted by Ωd = 2πΩ/(60ωn), while the dimensionless specific cutting force
coefficient is wd = w̃/ω2

n. After dropping the hats, the SE method is applied using
the formulas above with dimensionless delay τ = 2π/v.

Throughout Section 3.1, the results are presented for the parameter set given in
Table 3.1. For down-milling, the results are shown in Figure 3.2. The left column
of the figure shows that the low immersion ratio (ae/D = 0.05) results in periodic
jumps in H(θ) and that the convergence of the stability chart is very slow. Even
with polynomial order n = 50, the stability boundary does not coincide with the
exact one. In contrast, the right column of Fig. 3.2 shows that in the case of full
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FIGURE 3.2: Convergence of stability maps for s/2 = 1 DoF, down-milling with-
out any treatment of discontinuities in B(θ). The radial immersion ratios are
ae/D = 0.05 and ae/D = 1, the element number is E = 1 and the stability maps
are calculated on a 400× 400 grid. Further parameters are taken from Table 3.1.

immersion (ae/D = 1) there is no discontinuity in H(θ) and that the convergence
of the stability boundary is fast. In this case, polynomial order n = 25 already gives
accurate results. It can be thus inferred that stability maps converge slowly when
discontinuities are present in H(θ) (that is when B(θ) is discontinuous), otherwise
they converge fast. Consequently, in order to avoid poor convergence properties
it is necessary to further improve the method to handle discontinuities. These im-
provements are detailed in the following.

3.1.3 Extension of the SE method

The inaccuracy in the stability calculation is caused by the inaccuracy of the Lobatto-
type Legendre-Gauss quadrature in (3.13) due to the discontinuity of function B(θ).
In order to avoid discontinuity within Rk

i,j , the domain of integration is split onto
sub-domains where function B(θ) remains smooth. Discontinuities are caused ei-
ther by the entering or the exiting teeth of the tool. Consequently, in order to locate
the discontinuities, it is useful to decompose B(θ) into parts which correspond to
different teeth. This leads to the expression

Rk
i,j =

v∑
p=1

Rk,p
i,j =

v∑
p=1

∫ 1

−1
Bp

(
h(ζ+1)

2 +(k−1)h

)
φj(ζ)ψi(ζ)dζ. (3.20)

The discontinuity points can be located for each Bp(θ) function. Throughout this
thesis, milling tools are assumed with uniformly distributed cutting teeth. In the
following, parameters

θp1 = ϕent − (p− 1)
2π

v
, θp2 = ϕex − (p− 1)

2π

v
, (3.21)

are introduced for the notation of the angle of rotation corresponding to the en-
trance and exit of the p-th tooth, respectively. The possible cases for the location of
the discontinuities relative to the principal period [0, τ ] are the following:



54 Chapter 3. Applications to machine tool chatter

FIGURE 3.3: Different scenarios for the relation between the principal period and
the entrance and exit of the pth tooth, which define the discontinuities in Hp(θ).

I) 0 < θp1 < τ and 0 < θp2 < τ

δp1 = mod (θp1, h) , qp1 = floor (θp1/h) + 1

δp2 = mod (θp2, h) , qp2 = floor (θp2/h) + 1

II) θp1 ≤ 0 and 0 < θp2 < τ

δp1 = 0 , qp1 = 1

δp2 = mod (θp2, h) , qp2 = floor (θp2/h) + 1

III) 0 < θp1 < τ and θp2 ≥ τ

δp1 = mod (θp1, h) , qp1 = floor (θp1/h) + 1

δp2 = h , qp2 = E

IV) θp1 ≤ 0 and θp2 ≥ τ

δp1 = 0 , qp1 = 1

δp2 = h , qp2 = E

V) θp1 ≤ 0 and θp2 ≤ 0 (the pth tooth is not in the cut)

δp1 = 0 , qp1 = 1

δp2 = 0 , qp2 = 1
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VI) θr1 ≥ τ and θr2 ≥ τ (the pth tooth is not in the cut)

δp1 = h , qp1 = E

δp2 = h , qp2 = E

Only the first four cases are associated with actual cutting over the principal period
[0, τ ], these cases are illustrated in Figure 3.3. Using these formulas, the integral
terms in (3.20) can be calculated as

Rk,p
i,j =



∫ −1+βp2
−1+βp1

Bp

(
h(ζ+1)

2 +(k−1)h

)
φj(ζ)ψi(ζ)dζ if k = qp1 = qp2 ,∫ −1+βp2

−1 Bp

(
h(ζ+1)

2 +(k−1)h

)
φj(ζ)ψi(ζ)dζ if k = qp2 6= qp1 ,∫ 1

−1+βp1
Bp

(
h(ζ+1)

2 +(k−1)h

)
φj(ζ)ψi(ζ)dζ if k = qp1 6= qp2 ,∫ 1

−1 Bp

(
h(ζ+1)

2 +(k−1)h

)
φj(ζ)ψi(ζ)dζ if qp1 < k < qp2 ,

0 otherwise ,

(3.22)

where βp1 = 2δp1/h and βp2 = 2δp2/h. The integral terms in (3.22) are evaluated using
the Lobatto-type Legendre-Gauss quadrature according to

Rk,p
i,j =



βp2−β
p
1

2

∑n+1
q=1 F

I
i,qB

k,p
q,IL

I
q,j if k = qp1 = qp2 ,

βp2
2

∑n+1
q=1 F

II
i,qB

k,p
q,IIL

II
q,j if k = qp2 6= qp1 ,

2−βp1
2

∑n+1
q=1 F

III
i,q Bk,p

q,IIIL
III
q,j if k = qp1 6= qp2 ,

Fi,jB
k,p
j,IV if qp1 < k < qp2 ,

0 otherwise ,

(3.23)

where

Bk,p
j,α = Bp

(
h(ηαj +1)

2 +(k−1)h

)
, Lαq,j = φj

(
ηαq
)
, Fαi,q = ψi(η

α
q )wq , (3.24)

and

ηαj =



βr2−βr1
2 (ζj + 1)− 1 + βr1 if α = I ,

βr2
2 (ζj + 1)− 1 if α = II ,

2−βr1
2 (ζj + 1)− 1 + βr1 if α = III ,

ζj if α = IV .

(3.25)

As it is evident from Fig. 3.4, formula (3.20) with (3.23) gives fast convergence for
the stability boundaries even in the presence of discontinuities in B(θ). For ex-
ample, for spindle speed range Ω ∈ [5000, 25000] rpm, polynomial order n = 20
already gives accurate results for radial immersion ratios ae/D = 0.05, 0.1 and
0.5. For immersion ratios ae/D = 0.75 and 1, accurate calculations require slightly
higher polynomial orders (n = 30 and n = 25, respectively). Note that, for v = 2,
the smaller the radial immersion, the longer the free vibration. The solution in
the free vibration period is more accurate for a fixed polynomial order n than the
approximation of the solution segment during cutting. Consequently, the higher
the ratio of the duration of the free vibration and cutting, the more accurate the
solution. Also, note that there exists another solution for the treatment of disconti-
nuities by locating the element boundaries at the discontinuity points of B(θ) (see
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[8, 56]). The herein presented approach provides a generalized framework, which
handles discontinuities without adjusting the number and the length of the ele-
ments.

3.1.4 Comparison with other methods

Since in practice it is desirable to apply the computationally most efficient ap-
proach, it is necessary to compare the SE method with other well-known numer-
ical methods from the literature. In order to enable the comparison of computa-
tional efficiency, the same examples are chosen from the published studies [18–
21, 32, 55, 66, 70] for the single and two DoF models of milling processes. The
computational efficiency of the SE method is investigated and compared based
on three criteria: the computational time, the convergence of stability boundaries,
and the convergence rate of the largest characteristic multiplier. The Matlab code
used for the calculation of stability boundaries can be downloaded from http:
//www.mm.bme.hu/~lehotzky/IJAMT2016.

Single DoF model. Figures 3.2, 3.4 and 3.5 show stability diagrams which corre-
spond to radial immersion ratios ae/D = 0.05, 0.1, 0.5, 0.75 and 1. Clearly, in the
case of continuous B(θ) (such as for full-immersion milling), formulas with and
without the treatment of discontinuities give the same results. The figures show
that polynomial orders n = 20 ∼ 30 give accurate results for the stability bound-
aries on the domain Ω ∈ [5000, 25000] rpm. It is also interesting to note that for
lower spindle speeds higher polynomial order n is required to achieve the same
accuracy. This can be seen in Figure 3.5, where the stability map of full immersion
down-milling is depicted for lower spindle speed ranges. It can also be inferred
that longer non-zero continuous part of B(θ) (that is longer time within the cut)
requires slightly higher polynomial order n for accurate results.

In order to show the efficiency of the extended SE method, the computational
time of constructing stability diagrams is compared to those in the literature. For
this purpose, cases which cover the results presented in [18–20, 32, 55, 66, 70] are
selected. In order to perform meaningful comparisons, the stability diagrams were
obtained using a computer with similar specifications to the computers used in the
above references. Namely, a PC running Matlab 2009 with 2.1 GHz Core 2 Duo
processor and 2GB RAM memory. The consistency of the computational hardware
allows performing direct comparisons between the SE and other prominent meth-
ods in the literature as shown in Table 3.2. Specifically, Table 3.2 summarizes the
computational times corresponding to these comparisons. Reference results us-
ing the zeroth order, updated semi-discretization (SD) method (see [32] for details)
were calculated and their computational times corresponding to accurate stability
boundaries are given in the table. These results were obtained using sparse matrix
multiplication in the Matlab code for better computational efficiency on the above
specified PC. Note that contrary to the SE method, for the SD method, n denotes
the number of divisions used in the history segment. In addition to the reference re-
sults obtained by the SD method, the lowest computational times are also collected
from [18–20, 32, 55, 66, 70] for comparison with the SE method. In these references,
different spindle speed domains and immersion ratios are investigated on different
grids of the parameter plane. These are all specified in Table 3.2 in order to facili-
tate precise and fair comparison. The domains for the depth of cut w are selected
according to the corresponding stability maps in Figures 3.2, 3.4–3.5 and 3.8. These
figures were also used for the selection of polynomial order n in Table 3.2, where

http://www.mm.bme.hu/~lehotzky/IJAMT2016
http://www.mm.bme.hu/~lehotzky/IJAMT2016
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FIGURE 3.4: Convergence of stability maps for s/2 = 1 DoF down-milling op-
eration with the treatment of discontinuities in B(θ) for radial immersion ratios
ae/D = 0.05, 0.1, 0.5, 1. The element number is E = 1 and the stability maps are

calculated on a 400× 400 grid. Further parameters are taken from Table 3.1.
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FIGURE 3.5: Convergence of stability maps for s/2 = 1 DoF down-milling oper-
ation with the treatment of discontinuities in B(θ) for low spindle speed ranges.
The radial immersion ratio is ae/D = 1, the element number is E = 1 and the
stability maps are calculated on a 400 × 400 grid. Further parameters are taken

from Table 3.1.
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G
ri

d

Ω
∈

a
e
/D

1 DoF model 2 DoF model

n Computational time [s] n Computational time [s]

SE SD SE SD Reference SE SD SE SD Reference

4
00
×

2
00

[5
,2

5]
kr

pm

0.05 20 40 32.35 776.4 13.9 [19] 20 40 174.3 1105 960.6 [18]

0.1 20 40 31.96 798.5 293.1 [18] 20 30 177.9 840.1 954.1 [18]

0.5 20 40 32.32 824.5 20 20 136.5 441.4

1 25 50 54.49 1237 129.6 [19] 20 20 138.5 505.9

2
00
×

1
00

[5
,1

0]
kr

pm

0.05 20 40 8.78 190.7 20 40 42.44 279.5

0.1 20 40 8.57 187.0 20 30 41.45 190.7

0.5 20 40 8.56 183.9 20 20 33.63 108.2

1 25 50 14.71 274.1 49 [55] 20 20 32.76 122.3

1
00
×

5
0

[5
,2

5]
kr

pm

0.05 20 40 2.41 44.80 20 40 11.31 67.52 26.5 [66]

0.1 20 40 2.44 44.49 20 30 11.16 45.36

0.5 20 40 2.46 46.23 20 20 8.94 27.84 9.3 [66]

1 25 50 4.04 69.79 20 20 8.69 32.03 27.4 [66]

TABLE 3.2: Computational times for different milling models for different radial
immersion ratios on three different grids and different spindle speed ranges, with
a total number of elements E = 1. Further parameters are taken from Table 3.1.
For the single DoF model down-milling for the two DoF model up-milling was

considered.

polynomial orders corresponding to accurate results on the specified spindle speed
ranges are given.

Table 3.2 shows that the SE method is the least computationally extensive ap-
proach in comparison with most of the other methods. One reason for the low
computational time of the SE method is that only one matrix inversion and one
matrix multiplication is needed to obtain the monodromy matrix. This contrasts
the need for multiple matrix inversions which is necessary, for example, when us-
ing the semi- and full-discretization methods.

Another reason for the efficiency of the SE method is its exponential conver-
gence rate with respect to polynomial order n. The exponential convergence rate
is shown in Figure 3.6, where the absolute error of the critical characteristic multi-
plier µ̃cr, calculated by the SE method, is shown as a function of polynomial order
n for fixed number of elements E. The absolute error of µ̃cr is calculated with re-
spect to the reference characteristic multiplier µcr which was determined using the
SE method with E = 10 and n = 50. It can be seen in the figure that the abso-
lute error is progressively decreasing with the increase of polynomial order n on a
logarithmic scale. Comparing the convergence rates in [19, 20, 55, 66, 70] with the
corresponding rates for the SE method in Figure 3.6 shows that the latter converges
faster with respect to n. The convergence rates of the SE method are similar to
those in [21]. However, since the PC used for obtaining the results in [21] has better
computational power, the corresponding efficiency of calculations cannot be mean-
ingfully compared to the rest of the methods in Table 3.2. The only case in Table
3.2 where the computational time is smaller than that of the SE method is the low
immersion single degree of freedom milling with ae/D = 0.05. Here, the numerical
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FIGURE 3.6: Absolute error of the critical characteristic multiplier with respect to
the reference critical multiplier µcr calculated for the case E = 10 and n = 50. The
absolute error is shown as a function of polynomial order n for different element
numbers E. Results are depicted for s/2 = 1 DoF down-milling operations with
radial immersion ratio ae/D = 1, spindle speed Ω = 5000 rpm and depths of cut
w = 0.2, w = 0.5 mm, w = 1 mm and w = 1.5 mm. Further parameters are taken

from Table 3.1.

FIGURE 3.7: Absolute error of the critical characteristic multiplier with respect to
the reference critical multiplier µcr calculated for the case E = 10 and n = 50. The
absolute error is shown as a function of element number E for different polyno-
mial orders n. Results are depicted for s/2 = 1 DoF down-milling operation with
radial immersion ratio ae/D = 1, spindle speed Ω = 5000 rpm and depths of cut
w = 0.2, w = 0.5 mm, w = 1 mm and w = 1.5 mm. Further parameters are taken

from Table 3.1.
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integration method [19] utilizes the closed form solution during the free oscillation.
In contrast, our method does not distinguish between free oscillation and cutting,
and solves the free oscillation using the SE method. Note that the separation of free
vibration could also be applied to the SE method in order to decrease the compu-
tation time, however, here the goal was to give a general framework rather than
utilizing particular properties of the system. To elaborate, free vibration is present
only for a tool with low number of teeth in case of low-radial-immersion milling.
Nevertheless, the computation time for full-immersion milling (where there is no
free oscillation) is less using the SE method than the numerical integration method.

Note that the SE method has two approximation parameters. One is the above
discussed polynomial order n, the other one is the number of elements E. In Fig-
ure 3.7, the convergence rate of the absolute error of the critical characteristic mul-
tiplier is depicted on a logarithmic scale as a function of the number of elements
E for different polynomial orders n. It can be seen that the method does not have
exponential convergence with respect to E.

Two DoF model. The convergence of the stability maps are shown in Figure 3.8
for up-milling operations with different radial immersion ratios. The calculations
are carried out with different polynomial orders n. It can be seen that polyno-
mial order n = 20 already provides accurate results over spindle speed domain
Ω ∈ [5000, 25000] rpm for all radial immersion ratios. The computational times for
different computational arrangements can be found in Table 3.2, where the com-
putational times of the SD method and the lowest computational times from ref-
erences [18–20, 32, 55, 66, 70] are compared to the results of the SE method. The
results show that the SE method provides the fastest computational times among
all of the investigated cases.

3.2 Digital position control in machining

As it was anticipated at the beginning of this chapter, for a better utilization of the
capacity of the machining center active chatter suppression techniques can be ap-
plied. One of these techniques, called active damping [65], builds an additional
control loop to the machine tool close to the tool tip, where it actuates based on
the measured velocity and displacement. Note that in machining centers the feed
motion of the tool relative to the workpiece is provided by the controllers of feed
drives. Therefore controllers are naturally present in machining centers and affect
the machining process through the feed motion. In this chapter, mechanical mod-
els are derived, which incorporate the control loop of the active damper or of the
feed drives of the machining center in the model of the regenerative cutting pro-
cess. For the modeling of feed drives two different cases are investigated. First, it is
assumed that the tool holder is fixed and the workpiece holder is moved by a feed
drive. Then the workpiece holder is considered to be fixed and the tool holder is
moved by a feed drive. For all cases, digital position control is applied according to
the control scheme, presented in Section 2.4. After the derivation of the mechanical
models, their linear stability is analyzed about periodic motions using the numeri-
cal algorithms, proposed in Section 2.4.
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FIGURE 3.8: Convergence of stability maps for s/2 = 2 DoF up-milling operation
with the treatment of discontinuities in B(θ) for radial immersion ratios ae/D =
0.05, 0.1, 0.5, 1. The element number isE = 1 and the stability maps are calculated

on a 400× 400 grid. Further parameters are taken from Table 3.2.

FIGURE 3.9: Model of milling operations subjected to active damping

3.2.1 Milling process with active damper

The one DoF mathematical model, presented in Section 3.1.1 assumes that the tool
(or the workpiece) can oscillate in the direction of the feed velocity only. In ad-
dition, the mechanical model, shown in Figure 3.9, takes into account a feedback
loop controlled by a proportional-integral-derivative (PID) controller, which pro-
vides the active damping to the milling process. The control force Q thus consists
of integral, proportional and derivative terms with feedback gains I , P and D, re-
spectively. The tool is modeled by a block of mass mt which is connected to the
tool holder via a spring of stiffness k and a dashpot of viscous damping c as shown
in Figure 3.9. The workpiece is assumed to move horizontally with a constant feed
velocity vf relative to the tool holder. The undamped natural angular frequency of
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the tool is ωn =
√
k/mt and the damping ratio is ζ = c/(2mtωn). Using dimen-

sionless time t̂ = ωnt and dropping the hat immediately, the governing equations
are

ẋ(t)=A0x(t) + C(x(tl−δt)−xd(tl−δt))
+ EXl − f(t,x(t),x(t−τd)) t ∈ [tl, tl+1) , (3.26)

Xl=Xl−1 +

ñ∑
b=1

Wb(x(tl−bδt)−xd(tl−bδt)) , (3.27)

where the state x(t) and the desired trajectory xd(t) are defined as

x(t) =

[
x(t)

ẋ(t)

]
, xd(t) =

[
xd(t)

ẋd(t)

]
, (3.28)

the numerical integral of x(t) at dimensionless time instant tl is denoted by Xl and

A0 =

[
0 1

−1 −2ζ

]
, C=

[
0 0

−kP −kD

]
, E=

[
0 0

−kI 0

]
, (3.29)

Wb=

[
Wb 0

0 Wb

]
, f(t,x(t),x(t−τd))=

Fc(t,x(t),x(t−τd))

mtω2
n

[
0

1

]
. (3.30)

Due to the rescaled time, dimensionless sampling period δt = ωn∆t and dimen-
sionless control gains are introduced as kI = I/(mtω

3
n), kP = P/(mtω

2
n) and kD =

D/(mtωn). The integral Xl of the state is computed using quadrature weights Wb.
In the following examples these quadrature weights are calculated according to the
closed type Newton-Cotes formulas (see Section 25.4 in [1]). The dimensionless re-
generative delay (which coincides with the tooth passing period) is τd = 2π/(vΩd),
with Ωd = 2πΩ/(60ωn) being the dimensionless spindle speed and v being the
number of cutting teeth. The cutting force is the resultant of forces acting on the
teeth (see Figure 3.10/B), hence the horizontal component of the resultant cutting
force is

Fc(t,x(t),x(t−τd)) =
v∑
p=1

gp(t) (Ft,p(t,x(t),x(t−τd)) cos(ϕp(t)) + Fn,p(t,x(t),x(t−τd)) sin(ϕp(t))) ,

(3.31)

where the window function is defined according to (3.6). The tangential and nor-
mal force components of the pth tooth (shown in Figure 3.10/B) are both calculated
according to the power law (see [39] for details)

Ft,p(t,x(t),x(t−τd)) = wKth
qc
p (t,x(t),x(t−τd)) , (3.32)

Fn,p(t,x(t),x(t−τd)) = wKnh
qc
p (t,x(t),x(t−τd)) , (3.33)

respectively. Here the angular position of the pth tooth at dimensionless time in-
stant t is ϕp(t) = Ωdt + (p − 1)2π/v. By assuming circular tooth path (see Figure
3.10/A), the chip thickness on the pth tooth at dimensionless time instant t can be
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FIGURE 3.10: Cutting model: A) circular tooth path approximation B) tangential
and normal cutting force components

approximated as

hp(t,x(t),x(t−τd)) ≈ ∆x(x(t),x(t−τd)) sin(ϕp(t)) , (3.34)

where
∆x(x(t),x(t−τd)) = fN + x(t)− x(t−τd) (3.35)

is the difference in the relative position of the tool and the workpiece between two
consecutive cuts.

It is assumed that the stationary solution
(
x̄(t), X̄l

)
for (3.26)–(3.27) is equal to

the desired solution (xd(t),0), which gives

˙̄x(t) = A0x̄(t)− f(t, x̄(t), x̄(t−τd)) . (3.36)

Since f(t+ τd, ·, ·) = f (t, ·, ·), there exists a τd-periodic stationary solution xp(t) =
xp(t + τd) of (3.36). If the desired solution is set to be the periodic stationary so-
lution of (3.36), that is xd(t) = xp(t), then f(t,xp(t),xp(t−τd)) = fp(t) becomes
solely time-dependent (see (3.30)–(3.35)). Consequently, (3.36) becomes a linear
autonomous ordinary differential equation for which the τd-periodic stationary so-
lution xp(t) can be computed in a simple way. Here, it is important to note that in
practice xp(t) and, consequently, x̄(t) cannot be determined accurately due to mod-
eling and parameter uncertainties, therefore the desired solution of the controller
cannot be set equal to the stationary solution x̄(t). This implies that the actual sta-
tionary solution is different from x̄(t) and is determined by the nonlinear hybrid
DDE-DE system (3.26)–(3.27). Nevertheless, here it is assumed that xd(t) = xp(t) is
known exactly as the τd-periodic stationary solution of (3.36). Consequently, linear
stability properties can be analyzed by the variational system of (3.26)–(3.27) about
the stationary solution (xp(t),0).

In (3.26)–(3.27), the decomposition of state variables as (x(t),Xl) =
(xp(t)+ξ(t),0+χl) and the first-order Taylor expansion of f(t,x(t),x(t−τd)) about
xp(t) with respect to perturbation ξ(t) leads to the variational system

ξ̇(t) = (A0−B(t))ξ(t)+B(t)ξ(t−τd)+Cξ(tl−δt)+Eχl t ∈ [tl, tl+1), (3.37)

χl = χl−1 +

ñ∑
b=1

Wbξ(tl−bδt) , (3.38)
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where

B(t) =

[
0 0

wd 0

]
v∑
p=1

Hp(t) , (3.39)

and Hp(t) is given according to (3.4). The stability of (3.37)–(3.38) can be analyzed
according to Section 2.4. Note that xp(t) is not involved in the variational system
(3.37)–(3.38), therefore the periodic solution of (3.36) does not need to be deter-
mined. It is also important to note that similarly as it was presented in Section 3.1,
B(t) is discontinuous in general. Consequently, during the application of the SE
method, the extension presented in Section 3.1.3 is used.

The period of functions gp(t) is τd and the digital control introduces an addi-
tional time period: the dimensionless actuation period δT = ñδt. Consequently,
(3.37)–(3.38) is a quasi-periodic system. Here, it is assumed that the ratio of the ac-
tuation period and the tooth-passing period is rational and a principal period can
be given as Tp = εδT = ρτd, with ε, ρ ∈ Z+. Thus, the case given in Section 2.4 can
be applied.
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FIGURE 3.11: Stability lobe diagrams for down-milling operations with active
damper using parameters ζ = 0.05, Kr = 3, ae/D = 0.5, v = 2, qc = 0.75, kI = 0.1,
kP = 0.2, kD = 0.2, δt = 0.1 and ñ = 4. Stability diagrams A) and B) were cal-
culated using the PsT method with fixed resolution m̃ and order n of polynomial
approximation, respectively. Stability diagrams C) and D) were calculated using
the SE method with fixed element number E and order n of polynomial approxi-

mation, respectively.

The SLD approximations corresponding to (3.37)–(3.38) are shown in Figure
3.11 for a fixed parameter set given in the caption. In panels A) and B), the stability
diagrams were computed using the PsT method. There are two approximation pa-
rameters in the PsT method: order n of polynomial approximation and resolution
m̃ of the dimensionless actuation period δT . The stability boundary converges if
both n and m̃ are increased, therefore sufficiently high n and m̃ are required for
an accurate stability boundary. In panels C) and D), the stability diagrams were
computed using the SE method. There are two approximation parameters in the
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SE method: order n of polynomial approximation and element number E, which
is the number of elements within one dimensionless tooth passing period τd. The
stability boundary converges if either n or E are increased, therefore sufficiently
high n or E are required for an accurate stability boundary.

Note that the difficulty of the SLD calculation is given by the change in the tooth
passing period τd = 2π/(Ωdv) along the axis Ωd. Since dimensionless actuation
period δT is fixed, this results in different Tp = εδT = ρτd principal periods for
each point along the axis Ωd. Therefore the distribution of gridpoints along Ωd is
not uniform, because ε, ρ ∈ Z+ has to hold.

3.2.2 Milling with controlled workpiece holder

tool

workpiece

Ω

k

c

00

controller

Δt

ΔT

Q

xd

x 2 x 1

mt

mw

Fc

FIGURE 3.12: Model of milling operations with digitally controlled workpiece
holder

In machining centers, the relative motion between the tool holder and the work-
piece is provided by controlled feed drives, which usually use a feedback loop in
order to stabilize the relative motion about the desired nominal feed velocity vf . In
this example, it is assumed that the tool holder is fixed while the position of the
workpiece is controlled by a digital PID controller. The corresponding mechanical
model is shown in Figure 3.12. In contrast with Figure 3.9, here the velocity of the
workpiece is not constant but its motion is given by state variable x2(t). The con-
trol force Q is calculated based on the the error between the actual x2(t) and the
desired xd(t) = vft position of the workpiece. The same way as in Section 3.2.1, the
time is scaled as t̂ = ωnt, with ωn =

√
k/mt being the undamped natural angular

frequency of the tool. After dropping the hat, the governing equations read

ẋ(t)=A0x(t) + Cx(tl−δt) + EXl − f(t,x(t),x(t−τd)) t ∈ [tl, tl+1) , (3.40)

Xl=Xl−1 +
ñ∑
b=1

Wbx(tl−bδt) , (3.41)



66 Chapter 3. Applications to machine tool chatter

where now

x(t)=


x1(t)

ẋ1(t)

x2(t)−v̂ft

ẋ2(t)−v̂f

 , A0 =


0 1 0 0

−1 −2ζ 0 0

0 0 0 1

0 0 0 0

 , C=− 1

mr


0 0 0 0

0 0 0 0

0 0 0 0

0 0 kP kD

,
(3.42)

E=− 1

mr


0 0 0 0

0 0 0 0

0 0 0 0

0 0 kI 0

 , f(t,x(t),x(t−τd))=
Fc(t,x(t),x(t−τd))

mtω2
n


0

1

0
1
mr

 (3.43)

and Wb = WbI, with mr = mw/mt being the ratio of the mass of the workpiece and
the tool. The horizontal component Fc of the resultant cutting force is defined in
the same way as in Section 3.2.1 except that the difference in the relative position of
the tool and the workpiece between two consecutive cuts is changed from (3.35) to

∆x(x(t),x(t−τd)) = x1(t) + x2(t)− (x1(t−τd) + x2(t−τd)) . (3.44)

The rest of the parameters in (3.40)–(3.43) are defined as in Section 3.2.1. Simi-
larly to Section 3.2.1, it is assumed that there exists a periodic stationary solution(
xp(t),Xp

l

)
for (3.40)–(3.41). Here it is important to note that in contrast with (3.36),

the Tp-periodic solution xp(t) cannot be simplified to a τd-periodic motion thus
f(t,xp(t),xp(t−τd)) remains nonlinear with respect to xp(t). With the assumption
that periodic stationary solution

(
xp(t),Xp

l

)
exists the state variables can be decom-

posed as (x(t),Xl) =
(
xp(t) + ξ(t),Xp

l + χl
)

and the first-order Taylor expansion
of f(t,x(t),x(t−τd)) about xp(t) with respect to perturbation (ξ(t),χl) gives a vari-
ational system of the form (3.37)–(3.38), where now matrices A0, C, E and Wb are
defined according to (3.42)–(3.43), while ξ(t) and B(t) are given as

ξ(t) =


x1(t)−xp

1(t)

ẋ1(t)−ẋp
1(t)

x2(t)−xp
2(t)

ẋ2(t)−ẋp
2(t)

 , (3.45)

B(t)=


0 0 0 0

1 0 1 0

0 0 0 0
1
mr

0 1
mr

0

wdf
1−qc
N (xp

1(t)−xp
1(t−τd)+xp

2(t)−xp
2(t−τd))

qc−1
v∑
p=1

Hp(t).

(3.46)

Here, in contrast with the previous example, the periodic stationary solution(
xp(t),Xp

l

)
of (3.40)–(3.41) needs to be determined since now the components xp

1(t),
xp

2(t) of xp(t) are present in the variational system (3.37)–(3.38) through (3.46). For
the sake of simplicity, it is assumed that τd = ε̃δT with ε̃ ∈ Z+, which results in a
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τd-periodic stationary solution
(
xp(t),Xp

l

)
, and simplifies (3.46) to

B(t) =


0 0 0 0

1 0 1 0

0 0 0 0
1
mr

0 1
mr

0

wd

v∑
p=1

Hp(t) . (3.47)
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FIGURE 3.13: Stability lobe diagrams for down-milling operations with controlled
workpiece holder using parameters ζ = 0.05, mr = 10, Kr = 3, ae/D = 0.5, v = 2,
qc = 0.75, kI = 0.1, kP = 0.2, kD = 0.2, δt = 0.1 and ñ = 4. Stability diagrams A)
and B) were calculated using the PsT method with fixed division number m̃ and
order n of polynomial approximation, respectively. Stability diagrams C) and D)
were calculated using the SE method with fixed element number E and order n

of polynomial approximation, respectively.

The SLD approximations corresponding to (3.37)–(3.38) with (3.42)–(3.43) and
(3.47) are shown in Figure 3.13 for a fixed parameter set given in the caption. In pan-
els A) and B), the stability diagrams were computed using the PsT method, while
in panels C) and D) the stability diagrams were computed using the SE method.
The convergence properties are similar to those in Figure 3.11. Namely, in case of
the PsT method, the stability boundaries converge if both polynomial order n and
resolution m̃ increase at the same time, while, in case of the SE method, the stability
boundaries converge if either polynomial order n or element number E increase.

3.2.3 Milling with controlled tool holder

In Section 3.2.2, the tool holder was fixed while the relative motion between the tool
and the workpiece was provided by a digital PID controller. In contrast, this exam-
ple assumes that the workpiece is fixed while the tool holder’s motion is stabilized
about a constant vf feed velocity using a digital PID controller. The corresponding
mechanical model is shown in Figure 3.14. Note that this model was first presented
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FIGURE 3.14: Model of milling operations with digitally controlled tool holder

in [64] for a different control scheme and without digital effects. The tool holder
and the feed drive are modeled by a single block of mass mf , which is connected
to the tool through a spring of stiffness k and a dashpot of viscous damping c. The
control force Q is calculated based on the error between the actual position x2(t)
and the desired position xd(t) = vft of the tool holder. The same way as in Section
3.2.1, the time is scaled as t̂ = ωnt, with ωn =

√
k/mt being the undamped natural

angular frequency of the tool. After dropping the hat, the governing equations are
again given in the form (3.40)–(3.41), where now

x(t) =


x1(t)− v̂ft

ẋ1(t)− v̂f

x2(t)− v̂ft

ẋ2(t)− v̂f

 , A0 =


0 1 0 0

−1 −2ζ 1 2ζ

0 0 0 1
1
mr

2ζ
mr

− 1
mr

− 2ζ
mr

 , (3.48)

f(t,x(t),x(t−τd)) =
Fc(t,x(t),x(t−τd))

mtω2
n


0

1

0

0

 , (3.49)

with mass ratio mr = mf/mt. Here the horizontal component Fc of the resultant
cutting force is defined the same way as in Section 3.2.1 except that the difference
in the relative position of the tool and the workpiece between two consecutive cuts
is changed from (3.44) to

∆x(x(t),x(t−τd)) = x1(t)− x1(t−τd). (3.50)

The rest of the parameters are given according to Section 3.2.2. The same way as
in Section 3.2.2, it is assumed that a periodic stationary solution

(
xp(t),Xp

l

)
ex-

ists for (3.40)–(3.41) . Again, the decomposition of state variables as (x(t),Xl) =(
xp(t) + ξ(t),Xp

l + χl
)

and the first-order Taylor expansion of the nonlinear term
about xp(t) with respect to the perturbation (ξ(t),χl) gives a variational system in
the form (3.37)–(3.38), where now matrix A0 is defined according to (3.48) and

B(t) =


0 0 0 0

1 0 0 0

0 0 0 0

0 0 0 0

wdf
1−qc
N (xp

1(t)−xp
1(t−τd))

qc−1
v∑
p=1

Hp(t) , (3.51)
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while matrices C, E and Wb are given according to (3.42)–(3.43) and ξ(t) is assem-
bled as (3.45). Similarly to Section 3.2.2, it is assumed that τd = ε̃δT with ε̃ ∈ Z+,
which simplifies (3.51) to

B(t) =


0 0 0 0

1 0 0 0

0 0 0 0

0 0 0 0

wd

v∑
p=1

Hp(t) . (3.52)
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FIGURE 3.15: Stability lobe diagrams for down-milling operations with controlled
tool holder using parameters ζ = 0.05, mr = 10, Kr = 3, ae/D = 0.5, v = 2,
qc = 0.75, kI = 0.1, kP = 0.2, kD = 0.2, δt = 0.1 and ñ = 4. Stability diagrams A)
and B) were calculated using the PsT method with fixed division number m̃ and
order n of polynomial approximation, respectively. Stability diagrams C) and D)
were calculated using the SE method with fixed element number E and order n

of polynomial approximation, respectively.

The SLD approximations corresponding to (3.37)–(3.38) with A0 given by (3.48),
C, E and Wb given by (3.42)–(3.43) and B(t) given by (3.52) are shown in Figure
3.15 for a fixed parameter set given in the caption. In panels A) and B), the stability
diagrams were computed using the PsT method, while in panels C) and D) the sta-
bility diagrams were computed using the SE method. The convergence properties
are again similar to those of Section 3.2.1–3.2.2: the stability boundaries converge
for the PsT method with the increase of both polynomial order n and resolution
m̃, while the stability boundaries for the SE method converge with the increase of
either polynomial order n or element number E.
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3.3 New results

On the example of the mathematical model of milling operations, I have general-
ized the spectral element method for the analysis of time-periodic delay-differential
equations with discontinuous time-periodic coefficients. The advantage of this gen-
eralization is that no adjustment of the element length is necessary in order to guar-
antee results with exponential convergence rates. The results are summarized as
follows.

Thesis 4

Convergent stability boundaries can be achieved by the spectral element method in the sta-
bility lobe diagrams of milling operations without the adjustment of the element length. In
order to do so, the integral terms of the approximation scheme should be split at the dis-
continuity fronts of the time-periodic coefficients. The comparison of the spectral element
method to the time-domain methods of the machining literature shows that the spectral ele-
ment method provides converged stability diagrams with smaller computational time. The
critical characteristic multipliers of the matrix approximation of the monodromy operator
of the governing equations converge faster with respect to the polynomial order, than that
of the time-domain methods of the machining literature.

Related publication: [54]
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I have analyzed the effect of three different digital feedback control mechanisms
on the stability of milling operations. In particular, I have applied a digital control
scheme to two existing models of milling processes subjected to feedback control.
In addition, I have proposed a new mechanical model, in which the control loop of
the drive of the workpiece holder is involved using the same digital control scheme.
This control scheme considers the sampling and actuation periods separately and
assumes piecewise constant control force. The stability analysis of these systems
with fixed sampling period has been carried out for the first time. The results are
summarized as follows.

Thesis 5

tool

workpiece

Ω

k

c

00

controller

Δt

ΔT

Q

xd

x 2 x 1

mt

mw

Fc

FIGURE 3.16: Model of milling operations with digitally controlled workpiece
holder

The mechanical model shown in Figure 3.16 can be used to analyze the effect of the feed
drive of the workpiece holder on the stability of milling operations. In the figure mt, c and
k are the modal mass, damping and stiffness of the tool, respectively, whose displacement
is measured by x1. The spindle speed is Ω, the horizontal cutting force component is Fc,
the mass of the workpiece holder together with the workpiece is mw, whose displacement
is measured by x2. The control force is Q, the desired position of the workpiece holder is
xd, the sampling period is ∆t and the actuation period is ∆T = ñ∆t, where ñ ∈ Z+ is
the number of samples per actuation period. With the application of a digital proportional-
integral-derivative controller with piecewise constant actuation and numerical integration,
the stability lobe diagrams can be determined for this model, for the model of milling oper-
ations subjected to active damping and for the model which incorporates the control loop of
the feed drive of the tool holder. Depending on the selection of control parameters, these sta-
bility diagrams show significant differences from that of the corresponding standard models
of the machining literature.

Related publications: [49, 51]
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Chapter 4

Stabilizability of delayed systems

The stabilizability of controlled dynamical systems is an important requirement in
engineering applications, since many times the maximization of some performance
measure of the system is desired while keeping stability. The performance measure
is usually defined by a cost function, which is need to be minimized by the proper
selection of control parameters. Consequently, the control parameters can be calcu-
lated as the solution of a constrained optimization problem. One example for this
optimization problem is the selection of the control gains of the active damper in
turning processes subjected to active damping, such that the maximum achievable
chip width wmax is reached without the occurrence of machine tool chatter. In the
following, this optimization problem is studied by assuming digital proportional-
derivative (PD) feedback control for the active damper.

In addition to the optimization problem of the active damper in turning, this
chapter also deals with the modeling of human balancing tasks, where the bal-
ancing processes are described by mechanical systems subjected to proportional-
integral-derivative-acceleration (PIDA) delayed feedback control. The loss of bal-
ance is studied, which is related to the loss of stabilizability of the closed-loop sys-
tem. In contrast with optimization problems, in balancing problems of mechanical
systems no cost function is needed to be minimized. Instead, the only goal of the
controller is to keep the closed-loop system stable about an unstable equilibrium of
the open-loop system.

4.1 Stabilizability of turning processes subjected to active
damping

One of the most important measures of the performance of manufacturing pro-
cesses is the material removal rate (MRR), which is the volume of chip removed
in a unit time. For turning processes, the nominal MRR is the product of the chip
width w, spindle speed Ω and nominal chip thickness h0. Since in turning Ω and
h0 are usually limited by the material and shape of the workpiece, major improve-
ments in the MRR can be achieved by the increase of w. However, as it was shown
in Chapter 3,w cannot be increased without limits, because of the occurrence of ma-
chine tool chatter. Consequently, a reasonable way for the increase of the MRR is to
lift the stability boundaries in the stability lobe diagrams (SLDs). These boundaries
can be lifted e.g. by building an active damper [65] to the turning machine close to
the cutting tool. However, with a fixed Ω, different stability limits can be achieved
for w, depending on the selection of control parameters. In the following, a stabi-
lizability diagram is determined for turning processes subjected to active damping,
where the active damper is controlled by a digital PD feedback controller. This sta-
bilizability diagram shows the maximum achievable dimensionless specific cutting
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FIGURE 4.1: The mechanical model of turning processes subjected to active damp-
ing

force coefficient wd,max versus the dimensionless spindle speed Ωd. Since wd,max is
proportional to wmax, the corresponding control gains give maximal MRR.

4.1.1 Modeling

The mechanical model of turning subjected to active damping is shown in Figure
4.1. It is assumed that the active damper is placed close to the cutting tool, there-
fore it can be considered in the mechanical model as a single force Q acting at the
tool tip. Similarly to Section 3.2.1, the tool is modeled by a block of mass mt which
is connected to the tool holder via a spring of stiffness k and a dashpot of viscous
damping c. The undamped natural angular frequency of the tool is ωn =

√
k/mt

and the damping ratio is ζ = c/ (2mtωn). The tool holder is moving with a con-
stant feed velocity vf with respect to the workpiece which is rotating with angular
velocity 2πΩ/60.

Similarly to Section 3.2.1, the cutting force can be decomposed to normal and
tangential components. Here, orthogonal cutting is assumed for which the normal
component is parallel to, while the tangential component is perpendicular to the
feed velocity. Out of these force components only the normal one plays an im-
portant role, since the constraints do not allow the movement of the tool in the
tangential direction. Similarly as in (3.33), the normal cutting force component is
calculated according to the power law

Fn(t) = wKnh
qc(x(t), x(t− τ)) , (4.1)

where now, in contrast with Section 3.2.1, the regenerative delay is τ = 60/Ω, that
is τ is the time of one complete rotation of the workpiece. Chip thickness on the
cutting edge

h(x(t), x(t− τ)) = vfτ + x(t)− x(t− τ), (4.2)

is calculated as the difference between the tool’s current position relative to the
workpiece and its relative position one revolution before (see Figure 4.1).

The control force Q is assumed in the same form as in Section 3.2.1, but now
with zero integral feedback gain I and with ñ = 1 number of measurements within
each actuation period. This latter means that the actuation period coincides with
the sampling period, that is ∆T = ∆t. Consequently, (3.26) with E = 0, ñ = 1
and Fc(t) = Fn(t), becomes the governing equation of the model shown in Figure
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4.1, with rescaled time t̂ = ωnt (the hat is dropped in (3.26)) . Vectors f , x, xd and
matrices A0, C are again given according to (3.28)–(3.30). Dimensionless control
parameters kP , kD, δt, δT and the dimensionless spindle speed Ωd are again defined
as in Section 3.2.1, while the dimensionless regenerative delay changes to τd =
2π/Ωd.

Similarly as in Section 3.2.1, it is assumed that the stationary (here equilibrium)
solution

x̄ =

[
−wKn(vfτ)qc/k

0

]
(4.3)

of the governing equation is known precisely by the controller and the desired
trajectory is set to xd = x̄. For perturbation ξ(t) = x(t) − x̄ about the stationary
state, the variational system of the governing equation reads as

ξ̇(t) = (A0−B)ξ(t)+Bξ(t−τd)+Cξ(tl−δt), t ∈ [tl, tl+1), (4.4)

with

B = wd

[
0 0

1 0

]
. (4.5)

4.1.2 Results

With the stability analysis of (4.4), SLDs can be constructed. In contrast with the
previous chapters, the semi-discretization method is used for stability analysis. For
(4.4), the matrix approximation U of monodromy operator U (Ξh) is expressed by
the semi-discretization method in the form

U = ΦΞ−1ΦΞ−2 · · ·Φ0, (4.6)

where Ξ = LCM(δt, τd) is the least common multiplier of δt and τd, while h is the
stepsize of the semi-discretization scheme, n = τd/h is the delay resolution and
m̃ = δt/h is the period resolution. Matrix Φu ∈ R2(n+1)×2(n+1) defines a linear map
between state vectors Xu and Xu+1, where

Xu =
[
ξ̃u+1−j

]n+1

j=1
(4.7)

approximates the solution segment ξtu(θ) = ξ(tu + θ), θ ∈ [−τd, 0] at time instant
tu = uh as

ξuh((1− j)h) ≈ ξ̃u+1−j . (4.8)

Here ξ̃u+1−j is given according to ξ̃k+1 = ξ̃
k
(tk+1), where ξ̃

k
(t) =

(
ξ̃k(t),

˙̃
ξk(t)

)T
is

the solution of the ordinary differential equation approximation

˙̃
ξk(t)=(A0−B) ξ̃

k
(t)+wd

(
D1(t)ξ̃k−n+D2(t)ξ̃k−n+1

)
+ Cξ̃(floor(k,m̃)−1)m̃, t ∈ [tk, tk+1) , (4.9)

of (4.4), with initial condition
ξ̃
k
(tk) = ξ̃k. (4.10)
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In (4.9), matrices D1,D2 ∈ R2×2 are defined such that

p3(t) = [0, 1]
(
D1(t)ξ̃k−n+D2(t)ξ̃k−n+1

)
(4.11)

gives a third order Hermite polynomial approximation for ξ̃k(t− τd) in time inter-
val t ∈ [tk, tk+1). Finally, the elements of Φk matrices can be calculated by solving
(4.9)–(4.10) for k = 0, . . . ,Ξ − 1. Details on the calculation of D1(t), D2(t) and Φk

matrices can be found in [47].
Note that LCM(δt, τd) = LCM(m̃, n), thus while the size of U is determined

only by the delay resolution n, the number of matrix multiplications in (4.6) de-
pends on the ratio of n and period resolution m̃. This latter creates difficulty during
the calculation of SLDs due to that the dimensionless sampling time δt is fixed (it
is given by the sampling frequency fs of the controller), while τd is inversely pro-
portional to Ωd. For accurate results, n should be kept high enough: according to
[47] n ≥ 30 is necessary for good approximation. At the same time, for the achieve-
ment of a closely equidistant grid on the Ωd axis, Ωd = 2π/(nh) has to be close to
the ideal grid. However, since δt is fixed, n cannot be chosen arbitrarily close to
the ideal grid because Ξ = LCM(δt, τd) has to be kept low. Consequently, choos-
ing the gridpoints along the Ωd axis needs special care in order to keep reasonable
computation times.

The stability of (4.4) depends on machining parameters Ωd, wd, system param-
eter ζ and control parameters δt, kP and kD. For the semi-discretized system with
fixed system parameter ζ, the stabilizability problem is defined by the objective
function

Jobj = −wd,crit (Ωd, δt, kP , kD) , (4.12)

where wd,crit is the stability limit of the matrix approximation (4.6) of the mon-
odromy operator. Objective function (4.12) is to be minimized.

For fixed δt and Ωd, the limit wd,max, above which stabilization is not possible
with any (kP , kD) control parameter combination can be calculated by increasing
wd and tracing the disappearance of stable domain in the (kP , kD) plane of control
parameters. By repeating this calculation on several gridpoints of the Ωd axis, a sta-
bilizability diagram can be computed which shows wd,max and the corresponding
kP,max, kD,max control gains versus Ωd. The concept of the calculation of stabiliz-
ability limits is shown in Figure 4.2, where a series of stability diagrams is drawn in
the plane (kP, kD) for different dimensionless spindle speeds Ωd and dimensionless
depth of cutswd. Clearly, the stabilizability boundary is between the two gridpoints
of wd, where the stable domain disappears in the corresponding stability diagrams.
With the refinement of the number of diagrams in this region of the wd axis, a more
accurate location of the limit of stabilizability can be given. Below, the steps of the
computation of the stabilizability diagram is provided in more detail.

1. The system parameter ζ and dimensionless sampling period δt are fixed.

2. The investigated region of the dimensionless spindle speed [Ωd,I,Ωd,II] is di-
vided onto N number of non-equidistant intervals by discrete values Ωd,i,
i = 1, 2, . . . , N such that the ratio of the corresponding dimensionless regen-
erative delay τd,i = 2π/Ωd,i and the dimensionless sampling period δt is a
rational number, i.e, τd,i/δt = ni/m̃i, where ni, m̃i ∈ Z+ give the delay and
the period resolutions, respectively. The resolution of the axis Ωd is such that
Ωd,i+1 − Ωd,i <

2
N (Ωd,II − Ωd,I) and ni ≥ 30 for all i = 1, 2, . . . , N .
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FIGURE 4.2: Stability diagrams on the plane of (kP , kD) dimensionless control
gains for δt = 0.5 dimensionless sampling time, ζ = 0.05 damping ratio and

different Ωd and wd values
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FIGURE 4.3: Stabilizability diagram of turning processes with damping ratio
ζ = 0.05, subjected to active damping using digital PD feedback controller with
sampling frequency fs = 2ωn (δt = 0.5); A) the maximum applicable dimen-
sionless specific cutting force coefficient wd,max versus the dimensionless spindle
speed Ωd; B) the dimensionless proportional gain, associated with wd,max; C) the

dimensionless derivative gain associated with wd,max

3. The spindle speed is fixed step–by–step to the discrete values Ωd = Ωd,i, i =
1, 2, . . . , N . For each fixed Ωd = Ωd,i, the stepsize of the semi–discretization
scheme is determined as hi = τd,i/ni.

4. The investigated region of the dimensionless depth of cut [wd,I, wd,II] is di-
vided onto (M − 1) equidistant initial intervals by discrete values wd,j =
j∆wd, j = 1, 2, . . . ,M with ∆wd = (wd,II−wd,I)/M . The stability diagrams in
the plane (kP, kD) are determined for all wd = wd,j , j = 1, 2, . . . ,M . If the case
wd = wd,j can be stabilized but there is no stable domain forwd = wd,j+1, then
the interval [wd,j , wd,j+1] is further investigated by interval halving method,
i.e., stability diagrams are determined for wd = wd,j + 1

2∆wd, then either for
wd = wd,j + 1

4∆wd or for wd = wd,j + 3
4∆wd, etc. The procedure is stopped if

wd is given with an accuracy of ∆wd/2
7 and its value is recorded as wd,max.

5. The maximum value wd,max is determined for all discrete spindle speeds Ωd,i,
i = 1, 2, . . . , N and the stabilizability diagram is plotted.

Figure 4.3 presents the stabilizability diagram for the dimensionless sampling
period δt = 0.5 and damping ratio ζ = 0.05. The boundaries of the investigated
parameter domain are [Ωd,I,Ωd,II] = [0.2, 2.5] and [wd,I, wd,II] = [0, 4] with N = 100,
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M = 4. The actual sampling period is ∆t = δt/ωn = 0.5/ωn, i.e,. the digital control
samples the state at a frequency fs = 1/∆t = 2ωn, which is the double of the natural
frequency of the system. The traditional SLD (i.e., the uncontrolled case, see [26])
is also shown by dotted line. It can be seen that the depth of cut can significantly
be increased. At the resonant spindle speed Ωd = 1/k, k = 1, 2, . . . the maximum
dimensionless depth of cut is about the double of the traditional SLD, while in
between the resonant spindle speeds, the depth of cut is increased by a factor of
8∼10. Note that this improvement is achieved in spite of the fact that the sampling
frequency of the controller is relatively low compared to natural frequency of the
uncontrolled system (f = 2ωn). Figure 4.3 also presents the dimensionless propor-
tional and derivative control gains, which are associated with the disappearance
of the stable domain in the plane (kP, kD). Note that kP,max = −1, which means
that the stable domain disappears at the stability limit kP = −1 as it can also be
observed in Figure 4.2.

The above presented analysis is based on an ideal model, since it does not con-
sider any noise, modeling uncertainties, and the parameters of the machining sys-
tem are also perfectly known at all time instances. In practice, the measured output
is affected by noise and the system parameters are changing during the operation
due to changing machining conditions (e.g., tool wear, changes in the local temper-
ature on the active face of the tool, etc.). Intuitively, if the uncertainties in mod-
eling, in system parameters and in the output were also taken into account then
the gain in the maximum depth of cut would decrease. In spite of these modeling
restrictions, the current analysis still presents a general view on the stabilizability
of machining operation. Furthermore, it was shown that the interplay between the
regenerative delay and the digital effects of the controller may strongly affect the
stabilizability of the system.

4.2 The modeling of human balancing with PIDA control

Human balancing is one of the most significant tasks of human’s everyday move-
ments. In the mechanical point of view, balancing means the stabilization of an
object about its equilibrium. In human balancing, the process of stabilization is
controlled by the brain: the brain carries out "measurements" with sensory organs
and based on these measurements it gives commands to the musculature. How-
ever, there is a time-gap between the detection and the realization of the commands
given to the musculature. The main cause of this time-delay (or reaction time) is
that the processing of the received information, decision making and its realization
require time. Similar stabilization problems show up in many industrial applica-
tions, where an unstable process is stabilized by feedback controllers. Controllers
carry the traits of human balancing since they take measurements on the mechani-
cal system and actuate according to algorithms based on the measured data.

The question arises: what is the algorithm which determines the command to
the musculature based on the information provided by the sensory organs of hu-
mans? The literature of biomechanics has been working on this question for several
decades [34, 35, 63, 90]. In the following, a possible operation of the human brain
during the balancing process is investigated by the modeling and analysis of two
balancing tasks: stick balancing [14, 42, 58] and postural balancing [4, 28, 57, 89].

First, the mechanical models of the two balancing tasks are constructed, where
the human interaction is considered by a single force or torque vector. This force or
torque is assumed to be governed by a PIDA delayed-feedback controller, where
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FIGURE 4.4: The mechanical model of stick balancing

the delay models the time-gap between movement detection and realization of
muscle movements. The proportional, derivative and acceleration feedback con-
cept assumes that the position, velocity and the acceleration of the balanced object
are all measured by the human sensory system. When these measured state values
do not coincide with the desired ones, a corrective force is applied on the balanced
object by the human, which is proportional to the error between the measured and
the desired state. Furthermore, the integral gain takes into account that during the
fine positioning of lifted items the static error resulting from modeling uncertain-
ties and friction has to be eliminated. In the industry, this static error is typically
eliminated by the inclusion of the integral of the position error in the feedback loop.
This gave the idea to add an integral gain to the control model of [28], where the
process of human balancing is considered by a proportional-derivative-acceleration
feedback controller.

After the construction of the mathematical models of the two balancing tasks,
their stability is analyzed around their equilibrium using locally linearized equa-
tions. The loss of balance is assumed to occur when the locally linearized system
cannot be stabilized by any control parameter set, that is when the locally linearized
system is not stabilizable. Consequently, after the construction of the mathematical
models their stabilizability is analyzed for small perturbations about their equilib-
ria. Finally, the results of the stabilizability analysis is presented and discussed for
the two balancing tasks based on experimental data.

4.2.1 Balancing models

Stick balancing is modeled by a bar and a single control force vector. It is as-
sumed that the air resistance can be neglected and the friction on the finger is large
enough to maintain zero relative velocity between the contact point of the finger
and the bar throughout balancing. The 3 DoF mechanical model of stick balanc-
ing is shown in Figure 4.4. The displacement of contact point K is measured by
coordinates x, y, while ϕ stands for the angular position of the bar. The governing
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equations of the mechanical model are

mẍ(t) +mdϕ̈(t) cos (ϕ(t))−mdϕ̇2(t) sin (ϕ(t)) = Qx(t), (4.13)

mÿ(t)−mdϕ̈(t) sin (ϕ(t))−mdϕ̇2(t) cos (ϕ(t)) = Qy(t)−mg, (4.14)
JCϕ̈(t) = Qy(t)d sin (ϕ(t))−Qx(t)d cos (ϕ(t)) , (4.15)

where m is the mass of the bar and JC is its mass moment of inertia about its cen-
troid C. The distance of the centroid of the bar from the contact point is denoted
by d, while g is the gravitational acceleration. The interaction between the fin-
ger and the stick is modeled by a single force vector Q(t) = (Qx(t), Qy(t))

T. This
force vector can be decomposed to feedforward and feedback terms as Q(t) =
Qff(t) + Qfb(t). The feedforward term Qff(t) is determined such that it moves
the system along a desired trajectory (xd(t), yd(t), ϕd(t)). The goal of stick bal-
ancing is to keep the stick in a vertical position, therefore the desired trajectory
is (xd(t), yd(t), ϕd(t)) ≡ (0, 0, 0) for which the corresponding feedforward term is
Qff(t) ≡ (0,mg)T. During stick balancing the goal is to maintain the stick in the
upright position, therefore the feedback control force is assumed to depend only
on the angular position of the stick. Furthermore, since a vertical movement of
the bottom point of the stick changes the angular position less than its movement
in the horizontal direction and since in reality humans typically use the vertical
movement only for "rescue actions" during stick balancing, the vertical component
of the feedback force is assumed to be zero. Consequently, the feedback force vector
obtains the form Qfb(t) =

(
Qfb
x (t), 0

)T, where the horizontal feedback force compo-
nent is assumed to be given according to a PIDA control rule of the form

Qfb
x (t) = I

∫ t

−∞
ϕ(θ − τ)dθ + Pϕ(t− τ) +Dϕ̇(t− τ) +Aϕ̈(t− τ), (4.16)

where I , P , D and A are the integral, proportional, derivative and acceleration
feedback gains, respectively. The reaction time of humans is modeled in the control
rule by time delay τ . After the linearization of (4.13)–(4.15) about the equilibrium
state (x, ẋ, y, ẏ, ϕ, ϕ̇) = (0, 0, 0, 0, 0, 0), one obtains

mẍ(t) +mdϕ̈(t) = Qfb
x (t), (4.17)

mÿ(t) = 0, (4.18)

JCϕ̈(t)−mgdϕ(t) = −Qfb
x (t)d. (4.19)

Note, however, that above it was assumed that parameters m, JC and d are known
exactly. If the controller does not know the exact value of these parameters, then
the feedforward force will be inaccurate, thus the linearized equations (4.17)–(4.19)
will obtain a different form. In the following, the exact values of all the system
parameters are assumed to be precisely known by the controller. Furthermore, it is
also assumed that the stick is prismatic and homogeneous, which results in d = l/2
and JC = ml2/12 with l being the length of the stick.

Note that by using (4.16), (4.19) contains only one state variable: ϕ. Conse-
quently, (4.19) can be detached from the system (4.17)–(4.19) and it can be solved
separately. As a result, in (4.17), the terms containing ϕ can be considered as an
excitation with explicit time-dependency. Equation (4.18) is also separated from
(4.17)–(4.19), in fact there is no motion in direction y. It can be thus concluded that
the stability of (4.17)–(4.19) is determined solely by (4.19). With the introduction of
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FIGURE 4.5: The mechanical model of postural sway

dimensionless time t̂ = t/τ and dropping the hat immediately, (4.19) reads

ϕ̈(t)− aϕ(t) = −kI
∫ t

−∞
ϕ(θ− 1)dθ− kPϕ(t− 1)− kDϕ̇(t− 1)− kAϕ̈(t− 1), (4.20)

where a = 6gτ2/l is a dimensionless system parameter, while kI = 6Iτ3/(ml),
kP = 6Pτ2/(ml), kD = 6Dτ/(ml), kA = 6A/(ml) are the dimensionless integral,
proportional, derivative and acceleration gains, respectively.

Postural sway, also called quiet stance, is the process of human balancing while
standing in one place. The mechanical model of postural sway is shown in Figure
4.5, which considers the human body by a prismatic bar. The contact between the
feet and the ground is modeled by a fixed joint at contact point K. The resistance of
the human ankle against rotation is modeled by a linear spring of torsional stiffness
kt and dashpot of torsional viscous damping ct. Again, the distance between the
contact point K and centroid C is denoted by d, the mass of the human body is m
and its mass moment of inertia about centroid C is JC. The governing equation of
the mechanical model is

JKϕ̈(t) + ctϕ̇(t) + ktϕ(t)−mgd sin(ϕ(t)) = −Q(t), (4.21)

where JK = JC + md2 is the mass moment of inertia about contact point K. Simi-
larly as in case of stick balancing, the control torque Q(t) = Qff(t) + Qfb(t) is split
onto feedforward and to feedback terms. The desired trajectory of the balancing
task is ϕd(t) = 0, for which the corresponding feedforward term is Qff(t) ≡ 0. The
feedback term Qfb(t) of the control torque is again defined as Qfb

x (t) in (4.16). Af-
ter the linearization of (4.21) about the desired trajectory and the introduction of
dimensionless time t̂ = t/τ while dropping the tilde immediately, one arrives at

ϕ̈(t)+bϕ̇(t)−aϕ(t) = −kI
∫ t

−∞
ϕ(θ−1)dθ−kPϕ(t−1)−kDϕ̇(t−1)−kAϕ̈(t−1), (4.22)

where the system parameters are now a = (mgd− kt)τ
2/JK and b = ctτ/JK, while

the dimensionless control parameters kI , kP , kD, kA are defined the same way as for
stick balancing. Note that formally (4.22) incorporates (4.20) (with b = 0), therefore,
in the sequel, the stabilizability analysis is detailed only for (4.22) with general
parameter sets.
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FIGURE 4.6: Stable parameter domain for system parameters a = 0.2, b = 0 and
control parameters kI = 0.2, kA = 0.2

4.2.2 Stabilizability analysis

In the following analysis, it is assumed that system parameter b has a fixed value
in (4.22). The critical system parameter a = acr is sought above which (4.22) is not
stabilizable, that is, above which (4.22) is unstable for any (kI , kP , kD, kA) control
parameter set.

For the stability analysis of (4.22), the D-subdivision method [75] is used which
was briefly detailed in Section 2.3.1. The D-curves correspond to the characteristic
roots λ = α + iβ with real part α = 0, that is to the characteristic roots which are
located at the imaginary axis. The D-curves can be expressed from the characteristic
equation of (4.22) and they are given by

β = 0 :

{
kP = a,

kD ∈ R,
(4.23)

β 6= 0 :

kP =
(
a+ β2

)
cos(β) + bβ sin(β) + kAβ

2,

kD =
a+ β2

β
sin(β)− b cos(β) +

kI
β2
,

(4.24)

where β ∈ [0,∞) is a running parameter (the frequency of the characteristic root).
For fixed a, kI and kA, these (kP (β), kD(β)) parametric curves split the (kP , kD) pa-
rameter plane onto domains in which the number of unstable characteristic roots
is constant. Those domains are sought which have zero number of unstable char-
acteristic roots. These domains can be found e.g. using numerical methods or the
so-called Stepan formulas (see Theorem 2.19. in [75]). Such stable domain is shown
in Figure 4.6 for fixed a, kI and kA parameters. In the parameter plane (kP , kD),
the stability boundary is drawn by thick and the D-curves are drawn by thin lines,
while the stable domain is shown by grey color. Panels A) and B) of Figure 4.7
and panel C) of Figure 4.8 show the stable domains in the parameter plane (kP , kD)
encircled by thick lines. These panels illustrate the typical behavior of the stable
domain under the increase of kI , a and kA, respectively. It can be seen, that the
stable domain shrinks with the increase of a or kI and expands with the increase
of kA. For each (kI , kA) parameter combination, an acr critical system parameter
can be found above which the stable domain disappears in the (kP , kD) plane. This
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FIGURE 4.7: Stabilizability diagram of (4.22) for b = 0 and kA = 0: A) stable pa-
rameter domain with fixed a = 0.2 and increasing kI values; B) stable parameter
domain with fixed kI = 0.4 and increasing a values; C) acr(kI) critical system

parameter as a function of kI
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FIGURE 4.8: Stabilizability diagram of (4.22) for b = 0: A) acr(kI , kA) critical sys-
tem parameter as a function of kI and kA; B) stabilizable domain with increasing
kA; C) stable parameter domain with fixed a = 0.2, kI = 0.4 and increasing kA

values
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FIGURE 4.9: Stabilizable domain of (4.22) for kA = 0.5, with increasing b values

means, that if a > acr(kI , kA), then (4.22) cannot be stabilized for any (kP , kD) pa-
rameter set. As Figure 4.6 illustrates, functions kP (β) and kD(β) (which describe
the D-curves) have one-one local extremum in the investigated part of the (kP , kD)
plane. The disappearance of the stable domain occurs when the kink of the D-curve
closes that is when these local extrema coincide. Consequently, the condition of the
disappearance of the stable domain is

dkP
dβ

(acr, βcr)= 2kAβcr+(2+b)βcr cos(βcr)−
(
acr−b+β2

cr

)
sin(βcr)=0, (4.25)

dkD
dβ

(acr, βcr)= −2kI
β3

cr

+
(1+b)β2

cr−acr

β2
cr

sin(βcr)+
acr+β2

cr

βcr
cos(βcr)=0, (4.26)

which gives a system of nonlinear equations for acr and βcr. This system of equa-
tions is solved using the built-in nonlinear equation solver of the software Wolfram
Mathematica, which employs a Newton-Raphson scheme. With the calculation of
acr over a grid of parameter plane (kI , kA), the two-parameter function acr (kI , kA)
can be determined. For the nonlinear solver, the close-enough initial guess at each
gridpoint was produced by the result at a neighboring gridpoint, while the initial
guess at the first gridpoint was calculated using the D-curve plots on the (kP , kD)
parameter plane close to the disappearance of the kink. Below acr (kI , kA), (4.22)
is stabilizable, hence the stabilizable sets of (a, kI , kA) can be visualized in a 3-
dimensional space, as it is shown in panel A) of Figure 4.8, where the gray vol-
ume illustrates the domain of stabilizable parameter sets. Corresponding to fixed
kA values, different sections of this volume are visualized by darker gray colors in
panels A) and B) of Figure 4.8 and panel C) of Figure 4.7.

At the beginning of Section 4.2.2, it was assumed that system parameter b has a
fixed value. In Figures 4.6–4.8, b = 0 was used. In order to show the effect of b on
the stabilizable domain of parameter plane (kI , a) the stabilizability boundaries of
(4.22) are computed for fixed kA and increasing b parameter values. The results are
shown in Figure 4.9. It can be seen that the stabilizable domain increases with the
increase of the damping term b.

4.2.3 Results

In the following, the above determined results for the stabilizability of (4.22) are
compared with experimental results given in the literature.
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FIGURE 4.10: Stabilizability diagram of stick balancing on the (kI , l) parameter
plane of dimensionless integral feedback gain and stick length with reflex delay

τ = 125 [ms] and dimensionless acceleration feedback gain kA = 0.9

Stick balancing is investigated in [14, 58]. Based on physiological experiments,
these papers estimated the reflex delay of human visuomotor control to be in the
range τ ∈ [100, 250] [ms]. By choosing the reflex delay of balancing as τ = 125 [ms]
and the dimensionless acceleration feedback gain as kA = 0.9, the above derived
results for the stabilizability of (4.22) give Figure 4.10, where the increase of the
integral gain kI does not decrease the critical length lcrit of the stick. In fact, as
panel B) of Figure 4.8 shows, acr is monotonously decreasing with the increase of
kI and since a is inversely proportional to l, this means that kI cannot decrease the
critical length of the stick for any control or system parameters. As a result, the
integral gain kI cannot improve the balancing performance of the model.

According to [15], the minimum length of the stick which can be balanced by
humans is about l = 40 [cm]. As it is shown in Figure 4.10, the dimensionless
integral gain corresponding to the critical length lcrit = 40 [cm] is kI = 0.3827.
Therefore, the above presented PIDA control rule can be used to explain the stick
balancing process. However, many important aspects of human balancing have
not been addressed by the analyzed model such as the dead zones of movement
detection, parameter uncertainties in the model used by the controller and the un-
certainties which are present in the state variables measured by the sensory organs
of humans. These unmodeled aspects may lead to the loss of stability and there-
fore to the increase in the calculated critical stick length lcrit. It is also important to
mention that several other control rules exist in the literature which also result in
critical length l = 40 [cm] (see [27]). As a result, the validity of the above presented
model needs further investigation.

Postural sway is the subject of [4]. Based on the results of this paper, the mechan-
ical parameters in (4.21) are chosen according to Table 4.1, which result in system
parameters a = 0.078 and b = 0.013. Using these parameters, the above derived
results for the stabilizability of (4.22) give Figure 4.11. It can be seen that the pa-
rameter combination of kI and kA can be chosen from a broad domain without the
loss of stabilizability. Consequently, the experimental results are justified for a wide
range of control parameters: the patient whose mechanical parameters are given in
Table 4.1 is able to keep balance. Furthermore, the wide range for the selection of
the stabilizing combination of control parameters kI and kA reflects that the balanc-
ing task is easy, which matches with the every-day experience of healthy humans.
However, it is important to mention again that several other control rules can be
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m 60 kg

d 1 m

JK 60 kgm2

kt 471 Nm/rad

ct 4.0 Nms/rad

τ 0.2 s

TABLE 4.1: Mechanical and physiological parameters of (4.21) according to [4]

FIGURE 4.11: Stabilizability diagram of postural sway on the (kI , kA) parameter
plane of dimensionless integral and acceleration feedback gains with dimension-

less system parameters a = 0.078 and b = 0.013

found in the literature which give similar results, therefore the further analysis of
the model and the comparison of results with experiments are necessary.
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4.3 New results

I have investigated the effect of active damper on the stability and stabilizability of
turning operations. The active damper was assumed to be controlled by a digital
proportional-derivative feedback controller, which generates a piecewise constant
force acting on the tool. The results are summarized as follows.

Thesis 6

In the mechanical model of turning operations subjected to active damping, the material
removal rate can be increased by the proper tuning of the control gains of the active damper.
The proper tuning of the control parameters can be carried out using stability diagrams.
In case of an active damper controlled by a digital proportional-derivative feedback loop
with piecewise constant control force, the omission of the delay, caused by sampling, and
the piecewise constant nature of the control force can lead to significant differences in the
stability diagrams. The sampling effect of the digital controller limits the maximum achiev-
able material removal rate. This limitation is captured by the stabilizability diagram which
shows the maximum achievable specific cutting force coefficient versus the spindle speed.

Related publications: [46, 47, 52, 53]
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I have modeled two human balancing tasks: stick balancing and quiet stance.
The balancing activity of humans was considered by a proportional-integral-
derivative-acceleration delayed feedback controller for both models. Stabilizabil-
ity diagrams were determined where the loss of stabilizability is associated with
the loss of balance of humans. I carried out comparison between the calculated
and the experimental results.

Thesis 7

By modeling the human balancing process with a proportional-integral-derivative-
acceleration (PIDA) delayed feedback controller in stick balancing and quiet stance, sta-
bilizability diagrams can be computed. These diagrams present the domain of system and
control parameters, for which the unstable equilibrium of the open-loop system becomes
stable in the closed-loop system. The comparison of the results to those of the literature
shows, that in case of the quiet stance model, there always exists a stabilizing set of control
parameters. In contrast, for the stick balancing model, there always exists a critical stick
length below which the stick cannot be stabilized for any set of control parameters. The inte-
gral gain of the control loop cannot improve the stabilizability properties of the investigated
models of the balancing tasks.

Related publications: [45]
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Appendix A

Results from numerical analysis

A.1 Legendre polynomials

Definition of Legendre polynomials by Bonnet’s recursion formula:

P0(ζ) = 1

P1(ζ) = ζ

Pj(ζ) = 2j−1
j ζ Pj−1(ζ)− j−1

j Pj−2(ζ) j = 2, 3, . . .

Some properties of Legendre polynomials:

• orthogonality:
∫ 1

−1

Pj(ζ)Pi(ζ)dζ =
2

2j + 1
δi,j

• Pj(1) = 1 and Pj(−1) = (−1) j

Recursion formula for the first derivative of Legendre polynomials:

P ′j(ζ) = (2j − 1)Pj−1(ζ) + P ′j−2(ζ) j = 2, 3, . . .

Due to the above formula and the orthogonality property of Legendre polynomials:

∫ 1

−1
P ′j(ζ)Pi(ζ)dζ =


0 if i > j

2 if (j−i) mod 2 6= 0

0 if (j−i) mod 2 = 0

A.2 Lobatto-type Legendre–Gauss quadrature

The Lobatto-type Legendre-Gauss quadrature approximates a definite integral by
a sum as

I =

∫ b

a
x(t)dt ≈ Ĩ =

n+1∑
q=1

x(tq)wq ,

where tq = a−b
2 ζ∗q + a+b

2 with ζ∗q and wq being the quadrature nodes and weights,
respectively. The Lobatto-type Legendre-Gauss quadrature gives exact results for
all polynomials with maximum order 2n − 1. The quadrature nodes are the roots
of (1 − ζ2)P ′n(ζ), that is −1, 1 and the roots of the first derivative of the Legendre
polynomial of order n. The quadrature weights are given by

wq =


2

n(n+ 1)
if q = 1, n+ 1 ;

2

n(n+ 1)P 2
n(ζ∗q )

if q = 2, 3, . . . , n .
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A.3 Chebyshev points and polynomials

Theorem
Consider the Lagrange interpolant x̃(θ) of x(θ) on the domain θ ∈ [a, b], using the
node set {θj}nj=1 ⊂ [a, b]. Assume, that x(t) is Cn on the given interval. Then at
any θ point of [a, b], the error En(θ) = x(θ) − x̃(θ) of interpolation is given by the
formula

En(θ) = −x
(n)(θ∗)

n!
ωn(θ) , ωn(θ) =

n∏
j=1

(θ − θj) ,

where θ∗ ∈ [a, b] is a constant which depends on the value of θ.

Theorem
Let [a, b] a fixed interval. For a pn(θ) n-order polynomial with leading coefficient 1,
|pn(θ)|C[a,b] ≤ |qn(θ)|C[a,b] for all qn(θ) n-order polynomial with leading coefficient
1 if and only if pn(θ) has at least n + 1 distinct absolute extrema on [a, b]. On these
points the absolute value of pn(θ) is the same, while the sign of its value alternates.

Theorem
There is only one pn(θ) n-order polynomial with leading coefficient 1 on [a, b], for
which |pn(θ)|C[a,b] ≤ |qn(θ)|C[a,b] for all qn(θ) n-order polynomial with leading coef-
ficient 1.

Theorem
On the domain [−1, 1] the function

T̃n+1(θ) =
cos(n arccos(θ))

2n−1
, n ≥ 1

is an n-order polynomial with leading coefficient 1 having n + 1 absolute extrema
with alternating signs.

Definition
Polynomials T1(θ) = 1 and Tn+1(θ) = 2n−1T̃n+1, n ≥ 1 are called Chebyshev poly-
nomials.

Corollary
Since ωn(θ) is an n-order polynomial with leading coefficient 1, choosing {θj}nj=1
as the set of zeros of Tn+1(θ) scaled from domain [−1, 1] to [a, b] leads to minimal
|En(θ)|C[a,b], moreover an upper estimation can be given by

|En(θ)|C[a,b] ≤
max
θ∗∈[a,b]

{∣∣x(n)(θ∗)
∣∣}

n! 2n−1
.

Theorem
The Chebyshev polynomial Tn+1(θ) = cos(n arccos(θ)) can be given by the recur-
sive formula

Tj+1(θ) = 2Tj(θ)− Tj−1(θ) , j = 2, . . . , n ;

with T1(θ) = 1 and T2(θ) = θ.
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Theorem
If x(θ) is absolute continuous on the domain of interpolation, then its Lagrange
interpolant x̃(θ) on the zeros of the Chebyshev nodes converges uniformly to x(θ)
in the C[a, b] norm as n→∞.
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