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Abstract

This paper presents a study on the limits of stabilizability of unstable second-order dynamical systems by means of digital

proportional-integral-derivative-acceleration (PIDA) feedback. Four different models are considered, which are all governed by

the same dimensionless second-order differential equation. The mathematical model under analysis is a hybrid system involving

terms with piecewise constant arguments due to the discrete sampling and actuation of the controller. Closed form formulas are

derived for the domain of stability and for the limits of stabilizability as function of the system parameters, the sampling period

and the control gains. It is concluded that while the acceleration term extends the limit of stabilizability, the integral term reduces

stabilizability properties.
c© 2017 The Authors. Published by Elsevier B.V.
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1. Introduction

It is known for a long time that stabilization of an unstable equilibrium by means of delayed feedback is limited

by the extent of the delay in the feedback loop. For a second-order system (e.g., an inverted pendulum) subjected

to a continuous-time proportional-derivative (PD) feedback, the critical feedback delay limiting stabilizability can

be given in closed form1,2,3. This critical delay can essentially be extended by involving the delayed acceleration

into the feedback term4,5, which gives a proportional-derivative-acceleration (PDA) feedback. It is also known that

involving an integral term, thus applying a proportional-integral-derivative-acceleration (PIDA) feedback, does not

further increase of the critical delay6. Stabilizability conditions for these continuous-time PD, PDA or PIDA feedback

systems can be given by means of the method of D-subdivision and its generalizations2,7,8.

In industrial applications, feedback mechanisms are implemented using digital controllers, which cannot be de-

scribed as continuous-time dynamical systems any more, but rather can be represented as discrete-time maps9,10,11,12,13.

Stabilizability issues still arise for digitally controlled machines, but here, the role of the feedback delay is taken by
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the sampling period. The critical size of the sampling period, which limits the stabilizability of a second-order system

(e.g., an inverted pendulum) subjected to a digital PD feedback, can be given in closed form as function of the system

parameters14. This criteria can be generalized for cases where additional delays, which are integer multiples of the

sampling period, show up in the feedback loop15. Similarly to the continuous-time feedback systems, the critical sam-

pling period is increased when the acceleration is involved in the feedback term (digital PDA controller)16. The goal

of this paper is to analyze whether the limit of stabilizability can be further extended by the inclusion of an integral

term (digital PIDA controller). For this analysis, closed-form formulas are derived which ensure the stability of the

system, and the limits of stabilizability are also determined in the space of control parameters. During the analysis, the

zero-order hold of the controller and the effect of sampling in the closed-loop system are considered using a sampling

and actuation scheme according to Stepan10.

In this paper, an unstable second-order system is analyzed, which is often associated with the model of the inverted

pendulum. Actually, unstable second-order systems describes more general processes. When the goal of the feedback

control system is to track a desired path or to simply remain in the proximity of a desired equilibrium position in

the gravitational field, then the control action can usually be decomposed to a feedforward and a feedback term.

The feedforward terms are determined by the inverse dynamics associated with the desired motion, while the role of

the feedback term is to compensate for the error caused by the inaccurate inverse dynamics model. The variational

system about the desired motion in this case is a second-order differential equation with a feedback term. In this paper,

four different mechanical model of a balancing task is considered as a special type of tracking problems. First, it is

shown that all the four systems are governed by the same second-order system (with different meaning of the system

parameters). Then, the stabilizability conditions are derived in closed form in case of digital PIDA feedback.

2. Modeling

Four different mechanical models shown in Figure 1 are investigated. Panel I) illustrates the control of a block of

mass in the vertical plane. The control input is a vertical force and the control goal is the stabilization of the vertical

position of the mass about φ = 0. In panels II)–IV) three different mechanical systems are shown, each incorporating

the balancing of a homogeneous, prismatic beam. In each case the control goal is the stabilization of the beam about

its upper or lower equilibrium points. In panel II), the control input is a torque, which is applied directly on the beam

e.g., by a rotating inertial disc. In contrast, in panels III) and IV) the control input acting on the beam is a force, which

is produced by a sliding cart (panel III) and by a rolling wheel (panel IV). In the latter case, the actual control effort is

a torque acting on the wheel.

Without going into details on the derivation of the equations of motion, the governing equations of the mechanical

systems in Figure 1 are listed below.

Fig. 1. The analyzed mechanical models
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I)

φ̈ =
u

M
− g (1)

II)

φ̈ −
3g

2l
sin(φ) =

3u

Ml2
(2)

III)

2lφ̈ − 3g sin(φ) − 3 cos(φ) ẍ = 0 (3)

−lMφ̈ cos(φ) + lMφ̇2 sin (φ) + 2(M + m)ẍ = 2u (4)

IV)

2lφ̈ − 3g sin(φ) − 3R cos(φ) ẍ = 0 (5)

−lRMφ̈ cos(φ) + lRMφ̇2 sin(φ) + R2(2M + 3m) ẍ = 2u (6)

Here M is the mass of the block (I) and the pendulum (II-IV), l is the length if the pendulum, m is the mass of the

sliding cart (III) and the wheel (IV) and R is the radius of the wheel, which is assumed to be homogeneous. The

general coordinate to be controlled is φ while x is a cyclic coordinate representing the position of the suspension point

of the pendulum (III, IV). The control force/torque is denoted by u.

Note that the mechanical systems all have ideal constraints, thus the above equations of motion can be derived

using Lagrange’s equations of the second kind. Also note that, for model III, ẍ can be expressed from (3) (or from

(4)) and by substituting it to (4) (or to (3)) one can obtain a differential equation which is solely dependent on φ and

its derivatives: (
1 −

3M

4(M + m)
cos2(φ)

)
φ̈ +

3M

4(M + m)
sin(φ) cos(φ) φ̇2 −

3g

2l
sin(φ) =

3 cos(φ) u

2l(M + m)
. (7)

In a similar way, for model IV, the equation of motion can be derived using (5)–(6) in the form

(
1 −

3M

4M + 6m
cos2(φ)

)
φ̈ +

3M

4M + 6m
sin(φ) cos(φ) φ̇2

−
3g

2l
sin(φ) =

3 cos(φ) u

lR(2M + 3m)
. (8)

After the linearization of (2), (7) and (8) about the equilibrium points φe = 0 and φe = π, the governing equation

of (1) and the linearized equations of (2), (7) and (8) can be summarized in the form

ψ̈(t) + sψ(t) = qu(t) + r, (9)

where ψ = φ − φe is a local coordinate about the equilibrium point,

r =

⎧⎪⎪⎨⎪⎪⎩
0 for models II), III) and IV)

−g for model I)
(10)

coefficients s and q are summarized in Table 1, and s0 = 3g/(2l).

The control input is given by a PIDA feedback rule of the form

u(t) = −sgn(q)
(
IΨ j−1 + Pψ

(
t j−1

)
+ Dψ̇

(
t j−1

)
+ Aψ̈

(
t j−1

)
+ qr

)
, t ∈

[
t j, t j+1

)
, (11)

where I, P, D and A are the integral, the proportional, the derivative and the acceleration feedback gains, respectively,

Ψ j denotes the numerical integral of ψ(t) calculated at t = t j+1 by the rectangle rule

Ψ j = Ψ j−1 + Δt ψ
(
t j

)
. (12)

Note that in addition to the feedback term, a feedforward term qr is also applied in the control law (11) in order to

eliminate the explicit terms related to the external forces.
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φe I) II) III) IV)

s
0 0 −s0 −s0

4M+4m
M+4m

−s0
4M+6m
M+6m

π s0 s0
4M+4m
M+4m

s0
4M+6m
M+6m

q
0 1

M 3
Ml2

6
l(M+4m)

6
lR(M+6m)

π − 6
l(M+4m)

− 6
lR(M+6m)

Table 1. Parameters s and q within (9) for different mechanical systems, about different φe equilibrium states

Equation (11) assumes that the position, velocity and acceleration of the local coordinateψ are measured accurately

with sampling frequency fs. Therefore, measurements are carried out in each t j = jΔt time instant, where Δt = 1/ fs
is the sampling period and j ∈ N. Equation (11) further assumes that the processing of measured data (e.g. filtering)

and the time necessary for the computation of the control force together are less than a sampling period. This implies

that the applied control force in time period t ∈ [t j, t j+1] is based on the data measured at time instant t j−1. Since the

control input can be updated only upon the arrival of the next measurement, its value is held constant between two

consecutive samples, which introduce a zero-order hold in the feedback loop. Together, the zero-order hold and the

delay between measurement and actuation result in a time-varying input delay which increases linearly from Δt to

2Δt within each sampling period t ∈ [t j, t j+1). Further details on the above described sampling concept and actuation

scheme can be found in the article by Stepan10.

After rescaling the time as t̃ = |s|1/2 t, introducing dimensionless variables Δt̃ = |s|1/2Δt, Ψ̃ j = |s|
1/2Ψ j, kI =

Iq|s|−3/2, kP = Pq|s|−1, kD = Dq|s|−1/2, kA = Aq and dropping the tildes immediately, (9), (11) and (12) result in the

hybrid system

ψ̈(t) + sgn(s)ψ(t) = −kIΨ j−2 − (kP + kIΔt)ψ
(
t j−1

)
− kDψ̇

(
t j−1

)
− kAψ̈

(
t j−1

)
, t ∈

[
t j, t j+1

)
, (13)

Ψ j−1 = Ψ j−2 + Δt ψ
(
t j−1

)
. (14)

3. Stability analysis

The stability analysis of the hybrid system (13)–(14) provides information on the permissible control gains which

assure the stability of the closed-loop system about the investigated equilibrium points. Due to the sampling effect, the

analyzed hybrid system is equivalent to a time-periodic ordinary differential equation with principal period Δt, hence

its stability is determined by its monodromy matrix. In what follows, first, the derivation of the monodromy matrix

is given, then, based on the eigenvalues of the monodromy matrix (which are also called characteristic multipliers),

necessary and sufficient conditions are derived for the stability and stabilizability of the hybrid system. For the

construction of the monodromy matrix one has to determine a mapping for the state variables of (13)–(14) between

two consecutive samples at sampling instants t j and t j+1.

By denoting the right-hand side of (13) as

U(t) = −kIΨ j−2 − (kP + kIΔt)ψ
(
t j−1

)
− kDψ̇

(
t j−1

)
− kAψ̈

(
t j−1

)
, t ∈

[
t j, t j+1

)
, (15)

the solution of (13) with initial conditions

ψ
(
t j

)
= ψ j, ψ̇

(
t j

)
= ψ̇ j, U

(
t j

)
= U j (16)

can be uniquely determined in t ∈
[
t j, t j+1

)
. In the following this solution is denoted by χ j

(
t, ψ j, ψ̇ j,U j

)
. Note that

solution χ j depends always linearly on ψ j, ψ̇ j and U j. Since (15) contains no impact-like term, the solution and its

first derivative are both continuous, that is
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ψ j+1 = χ j+1

(
t j+1, ψ j+1, ψ̇ j+1,U j+1

)
= χ j

(
t j+1, ψ j, ψ̇ j,U j

)
, (17)

ψ̇ j+1 = χ̇ j+1

(
t j+1, ψ j+1, ψ̇ j+1,U j+1

)
= χ̇ j

(
t j+1, ψ j, ψ̇ j,U j

)
. (18)

Consequently, after specifying initial conditions Ψ−1, ψ0, ψ̇0 and U0 one can compose a "global" solution of (13)–

(14) as

χ
(
t,Ψ−1, ψ0, ψ̇0,U0

)
=

{ (
χ j

(
t, ψ j, ψ̇ j,U j

)
,Ψ j−1

)
, t ∈

[
t j, t j+1

)
, j ∈ N

}
, (19)

by solving (13)–(14) from interval to interval.

Note, however, that there is an important modeling issue related to the feedback of discrete values of the accelera-

tion, namely, the second derivative of the solution χ j is subjected to discontinuities at the sampling instants due to the

discontinuities in the control force, which occur at each instant when the control force is updated. The discontinuities

make the feedback of the acceleration ambiguous, since measurements can be made right before (at t = t−
j
) or right

after (at t = t+
j
) the update in the control force. In the case when the measurement of the acceleration is made right

before the update in the control force, one measures

ψ̈−j+1 = χ̈ j

(
t−j+1, ψ j, ψ̇ j,U

−
j

)
, (20)

where

U−j = −kIΨ j−2 − (kP + kIΔt)ψ j−1 − kDψ̇ j−1 − kAψ̈
−
j−1. (21)

On the other hand, when the acceleration is measured right after the update in the control force, one has

ψ̈+j+1 = −sgn(s)ψ j+1 + U+j+1, (22)

with

U+j+1 = −kIΨ j−1 − (kP + kIΔt)ψ j − kDψ̇ j − kAψ̈
+
j . (23)

In both cases a mapping can be constructed of the form

Y j+1 = ΦY j, (24)

which relates the generalized state variables at time instants t j and t j+1.

In the case when the measurement is made right before the update in the control force, this mapping is composed

from equation (14), (17)–(18) and (20)–(21). The generalized state variables are

Y−j =
[
Ψ j−1 ψ j ψ̇ j ψ̈

−
j U−j

]ᵀ
(25)

and the monodromy matrix is

Φ
− =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 Δt 0 0 0

0 a b 0 c

0 −sgn(s)b a 0 b

0 −sgn(s)a −sgn(s)b 0 a

−kI −(ΔtkI + kP) −kD −kA 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (26)

where parameters a, b and c are given in Table 2.

In the case when the measurement is made right after the update in the control force, the mapping is constructed

from (14), (17)–(18) and (22). The generalized state variables are

Y+j =
[
Ψ j−1 ψ j ψ̇ j ψ̈

+
j

]ᵀ
(27)
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sgn(s) a b c

-1 cosh(Δt) sinh(Δt) a − 1

0 1 Δt Δt2/2

1 cos(Δt) sin(Δt) 1 − a

Table 2. Parameters within monodromy matrices (26) and (28)

Fig. 2. Stability diagrams for the case s < 0 and Δt = 0.1. The boundary of stability is depicted for different acceleration and integral control gains
in the case when acceleration is measured right before the update in the control force.

Fig. 3. Stability diagrams for the case s < 0 and Δt = 0.1. The boundary of stability is depicted for different acceleration and integral control gains

in the case when acceleration is measured right after the update in the control force.

and the monodromy matrix is

Φ
+ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 Δt 0 0

0 1 b c

0 0 a b

−kI −(ΔtkI + kP) − sgn(s) −kD − sgn(s)b −kA − sgn(s)c

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (28)

Parameters a, b and c are again given in Table 2.

Note, that in reality, the updated control force does not prevail immediately, consequently the measurement of

acceleration right before the update in the control force described by monodromy matrix (26) is more realistic.

Mapping (24) is stable if and only if the absolute value of all eigenvalues μi (also called as characteristic multipliers)

of monodromy matrix Φ are less than one, that is |μi| < 1, ∀i. Stability domains can be determined by checking this

condition numerically over a grid in the space of control parameters. In Figures 2 and 3, the stability boundaries
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are visualized for monodromy matrices (26) and (28), respectively, for different acceleration feedback gains, fixed

sampling period and s < 0. The stable domains are those within the closed curves.

Other than numerical results, a more qualitative analysis can be carried out and the stability boundaries can be

derived in a closed form by following the same steps detailed by Stepan and Enikov14,10. In particular by employing

Möbius transformation the stability criterion |μi| < 1, ∀i can be transformed to the Liénard–Chipart stability criterion.

Below this derivation is omitted for the sake of brevity. The results can be summarized as follows. With the assumption

that measurements are made right before the update in the control force, the hybrid system (13)–(14) is stable if and

only if all the following inequalities hold:

a5 > 0, (29)

a3 > 0, (30)

a1 > 0, (31)

a1a2 − a0a3 > 0, (32)

−a2
1a2

4 + a1

(
a2a3a4 − a2

2a5 + 2a0a4a5

)
− a0

(
a2

3a4 − a2a3a5 + a0a2
5

)
> 0, (33)

where coefficients ai, i = 0, . . . , 5 are

a0 =Δt kI

(
−ac + b2 + c

)
, (34)

a1 = 2a3kA+2a2(kA

(
2−sgn(s)c

)
−1

)
−a

(
4+2bkD+2ckP−cΔtkI−2kA

(
sgn(s)b2

−sgn(s)c+1
))

− b2(ΔtkI−2
(
ckA−sgn(s)kA+kP+sgn(s)

))
−2bkD

(
sgn(s)c−1

)
+cΔtkI+2ckP + 2, (35)

a2 = 2sgn(s)bckD+4−cΔtkI−4a3kA−4a2kA

(
sgn(s)c−1

)
−a

(
4sgn(s)b2kA−2bkD−c

(
ΔtkI+2sgn(s)kA+2kP

)
+4

)
− b2(2sgn(s)kA

(
2sgn(s)c−1

)
+2kP+ΔtkI

)
, (36)

a3 = 6a3kA+a2(6sgn(s)ckA−2
)
−a

(
2kA−6sgn(s)b2kA+cΔtkI

)
+ b2(6ckA+ΔtkI−2sgn(s)

)
−2bkD−cΔtkI−2ckP+6, (37)

a4 = − 8a3kA−8a2kA

(
sgn(s)c+1

)
−a

(
4sgn(s)kA

(
2b2+c

)
+4bkD+cΔtkI+4ckP−8

)
− b2 (

4sgn(s)kA

(
2sgn(s)c+1

)
−ΔtkI−4kP

)
−4sgn(s)bckD+cΔtkI+8, (38)

a5 = 2a3kA+2a2 (
kA

(
sgn(s)c+2

)
+1

)
+a

(
2kA

(
sgn(s)

(
b2+c

)
+1

)
+2bkD+cΔtkI+2ckP+4

)
− b2 (

ΔtkI−2
(
sgn(s)

(
sgn(s)ckA+kA+1

)
−kp

))
+2b

(
sgn(s)ckD+kD

)
+cΔtkI+2ckP+2. (39)

In addition to the above analytical results, authors make the following conjecture based on numerical stability

tests. With the assumption that measurements are made right before the update in the control force, the hybrid system

(13)–(14), with kI � 0 and s ≤ 0 is stabilizable if and only if conditions

0 ≤ kI ≤
(1 − kA) (3 + kA − 2a)2

8cΔt
and 2a − 3 ≤ kA ≤ 1 (40)

hold. For the case s < 0, the limit of stabilizability is depicted in Figure 4. The stabilizable domains are those below

the curves. It can be seen that the large sampling periods are associated with zero integral gain, that is, the inclusion

of the integral term in the feedback loop does not contribute to the stabilizability.

4. Conclusions

This paper dealt with the stability analysis of four simple mechanical systems subjected to digital feedback control.

The stability and stabilizability conditions of these mechanical systems were studied by means of the analysis of their

governing equations linearized about their equilibrium points. In a unified framework of the mechanical models, an

PIDA feedback rule was analyzed which took into account the sampling effect of the feedback loop and the zero order

hold of the controller. For some specific cases closed form formulas were derived for the domains of stability and

stabilizability. Overall, it can be concluded that the integral gain can only deteriorate the performance of the controller

since it always decreases the domain of stability.
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Fig. 4. Stabilizability limits for kI � 0, s < 0 and for the case when acceleration is sampled right before actuation.
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