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Abstract

A simplified model of stick balancing on the fingertip subjected to predictor feedback is investigated, which accounts for three

important modeling issues: (1) feedback delay; (2) the sensory dead zone; and (3) limitation of the control force corresponding to

the maximum acceleration and the maximum jerk of human hand movement. Eight different cases (± sensory dead zone, ± accel-

eration limitation, ± jerk limitation) are compared by estimating the maximum balance time out of five time-domain simulations

with different initial conditions. It is shown that the region of linear stability in the plane of control parameters is reduced by the

presence of dead zone, not affected by limitations on hand acceleration, but is increased by limitations on the jerk.

c© 2017 The Authors. Published by Elsevier B.V.
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1. Introduction

The most difficult motor tasks to control are those which involve the stabilization of an unstable position. Conse-

quently studies of stick or pole balancing at the fingertip are important for investigating the neural control of voluntary

movements and the development of skill with practice1,2,3,4,5,6,7,8. Two different perspectives have arisen concerning

the nature of the underlying neural control strategy. First, studies which focus on stability of the upright position em-

phasize the importance of model predictive, or forward, control mechanisms2. For a given feedback delay, the more

robust mechanisms are those that can balance the shortest stick9. Second, studies that focus on the dynamics exhibited

by the balanced stick emphasize the presence of a sensory dead zone, namely the existence of a range of sensory input

for which no corrective actions are taken10,11. From a mathematical point of view a dead zone is a strong, small-scale

nonlinearity which has no effect on the large-scale stabilization of the linear dynamical system, but has major effects

on the generation of complex dynamics such as limit cycles and chaos12,13.
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Recently we showed that expert stick balancers are able to balance a 30cm stick on their fingertip for 240s and that

the time delay, τ, was 230 ms14. These observations argue in favor of a predictor-type feedback control mechanism

for stick balancing in 3D. Here we explore this model further by examining the effects of limitations on the maximum

acceleration and maximum jerk of the fingertip. These limitations represent an additional constraint on this balancing

task, namely, a saturation of the control force. Although the role of the jerk has received no previous attention with

respect to stick balancing, its role in other visually guided hand movements is well recognized15.

In this paper we demonstrate that traditional time-delayed PD controller cannot stabilize sticks of length 30cm

when τ = 230ms for 240s. Numerical evidence in support of a pendulum-cart model for stick balancing using a

predictor feedback control mechanism is provided. For this model, the inertia of arm mechanism is transformed

into the mass of the cart. Diagrams representing the balance time for different control parameter combinations are

presenting for different stick length. It is shown that as a result of the interaction of feedback delay, sensory dead zone

and fingertip movement constraints, a stick shorter than about 30cm cannot be balanced longer than 240s as observed

experimentally.

2. Mechanical model with arm mechanism

Balancing tasks are often modeled by the pendulum-cart model, which accounts for the fact that the hand is mov-

ing back and forth in the anteriorposterior direction. The equivalence between the human arm mechanism and the

pendulum-cart model is to be established by setting the mass m0 of the cart according to the inertia of the arm seg-

ments. During stick balancing on the fingertip, the movements of the arm of an experienced stick balancer are confined

to the elbow and shoulder while the wrist and finger are held rigid3. Assuming that the hand moves horizontally, the

human arm can be modeled as a slider crank mechanism shown in Fig. 1. The parameters of the mechanism are set

according to the average human arm segment as listed in Table 116.

Fig. 1. Model of human arm mechanism.

Table 1. Arm segment parameters taken from 16.

segment mass length (t)

upper arm mu = 1.775kg �u = 0.2874m

forearm mf = 1.015kg �f = 0.2666m

hand mh = 1.015kg �h = 0.0821m

The equivalence of the models is based on the equivalence of their kinetic energy. The kinetic energy of the arm

mechanism can be given as

Ekin,arm =
1

2
muv2

u +
1

2
Juϕ̇
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2
mfv
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2
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where vu, vf and vh are the velocities of the center of gravity of the upper arm, forearm and hand, respectively, and

Ju and Jf are the moment of inertia with respect to the normal line via the center of gravity of the upper arm and the

forearm. Assuming homogeneous arm segments, we have Ju =
1

12
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u and Jf =
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mf�
2
f
. Since the mass of the stick
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Fig. 2. Mechanical model of (a) pinned pendulum; (b) pendulum-cart model with negligible cart mass (m0 � m); (c) pendulum-cart model with

m0 � m. Panels (d), (e), (f) shows the oscillations when the pendulums are hung downward.

(m = 0.005 ∼ 0.022kg) is negligible compared to the mass of the arm-hand mechanism (cart), the kinetic energy of

the pendulum cart model is

Ekin,cart =
1

2
m0 ẋ2. (2)

Using the equations Ekin,arm = Ekin,cart, vh = ẋ and the relations between the velocities vu, vf and vh and the angular

velocities ϕ̇u and ϕ̇f , one can calculate the equivalent mass m0 of the cart. Assuming ϕu ≈ 20deg and ϕu ≈ 10deg for

the arm segment positions during stick balancing, the mass of the cart is obtained to be m0 = 1.2kg.

3. Stabilizability and critical lengths for delayed PD feedback

The differences between models with different m0 and their connection to the pinned inverted pendulum model is

illustrated in Fig. 2. The governing equations for the pinned inverted pendulum shown in Fig. 2a is

θ̈(t) − 3g

2�
θ(t) = − 3

m�2
T, (3)

where θ denotes the angular deviation of the pendulum from vertical, � is the length of the pendulum and T is the

control torque. When the pinned pendulum is hung downward its oscillation period is equal to

Td = 2π

√
2�

3g
. (4)

When the position of the cart is not controlled, then the governing equations for the pendulum-cart model shown

in Fig. 2b and Fig. 2c is

θ̈(t) − 6g

c�
θ(t) = − 6

(m + m0)c�
F, (5)
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where c = 4− 3m/(m+m0) is a constant and F is the control force. When the mass of the cart is negligible (m0 � m,

see Fig. 2b), then the constant c = 1. In this case, the oscillation period in the downward position is

Te = 2π

√
�

6g
=

1

2
Td, (6)

which is the half of the oscillation period of the pinned pendulum. When the mass of the cart is significantly larger

than the mass of the pendulum (m0 � m, see Fig. 2c), then c = 4. In this case, the oscillation period in the downward

position is

Tf = 2π

√
2�

3g
= Td, (7)

which is just equal to the oscillation period of the pinned pendulum.

It is known that structures cannot be stabilized about their unstable equilibria via delayed PD feedback if the delay

is larger than the critical value

τcrit,PD =
Tp

π
√

2
, (8)

where Tp is the period of the small oscillations of the structure hung at its downward position17. This implies that

there is a significant difference between the pinned inverted pendulum (or the pendulum-cart model with m0 � m)

and the pendulum-cart model with m0 � m. For the pinned inverted pendulum (Fig. 2a) or for the pendulum-cart

model with m0 � m (Fig. 2c), the critical delay is

τcrit,PD,a,c =
Td

π
√

2
=

√
4�

3g
. (9)

Alternatively, stabilizability condition can be defined as a critical length for a fixed feedback delay τ as

�crit,PD,a,c =
3

4
gτ2. (10)

For the pendulum-cart model with m0 � m (Fig. 2b), the critical length is

�crit,PD,b = 3gτ2. (11)

Thus the critical length for the pendulum-cart model with m0 � m is quarter of that with m0 � m. For instance, for

stick balancing at the fingertip, where the feedback delay is estimated to be τ = 230ms14, the critical length for the

case m0 � m is �crit,PD,b = 156cm, while for the case m0 � m is �crit,PD,c = 39cm only.

One should note that the above models assume a perfect implementation of the control loop free of any uncertainties

or noise. In real stick balancing, the critical length is certainly larger than the ones above due to the uncertainties in

the sensory inputs, the imperfect implementation of the control law and the noise in the actuation force. Experimental

stick balancing trials showed that skilled subjects are still able to balance sticks shorter than 30cm for minutes14. The

above observations imply that the control concept of the nervous system during stick balancing is not a PD feedback,

but something more efficient and sophisticated control algorithm, e.g., PDA feedback9,18, intermittent feedback4,7,8,

predictor feedback2,9,14. In the next section, we assume predictor feedback subjected to movement constraints of the

cart (fingertip).

4. Predictor feedback model with movement constraints on the displacement of the cart

If the displacement x of the cart is to be controlled, then the system cannot be reduced to a second-order scalar

equation as in (5). In this case the first-order representation of the pendulum-cart system reads

ż(t) = Az(t) + BF(t), (12)
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where

z(t) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
θ(t)

x(t)

θ̇(t)
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being the mass matrix and the stiffness matrix, respectively. Predictor feedback19 requires the prediction

zpred(t) = eÃτ̃z(t − τ) +
∫ t

t−τ̃
eÃ(t−s)B̃ fPF(s)ds, (15)

where Ã, B̃ and τ̃ are the parameters of the internal model of the neural system. This prediction is then employed for

a PD feedback, thus

FPF(t) = Kzpred(t), (16)

with

K =
(
kp,θ kp,x kd,θ kd,x

)
. (17)

If the internal model perfectly matches the real system, i.e., Ã = A, B̃ = B and τ̃ = τ, then the prediction is perfect,

zpred(t) = z(t), and the feedback delay is eliminated from the control loop. For stick balancing, perfect matching of

the internal model means that the masses m and m0, the length � of the stick and the feedback delay τ are known.

In the subsequent analysis, we assume that these parameters are known as a result of a long enough learning process

(practice).

Linear stability analysis of the system can be performed by standard techniques, such as the semidiscretization

method20. However, constraints on the control action and imperfections of the sensory perception present strong

nonlinearities in the governing equations, and linear stability predictions are not valid any more. In this cases, the

response of the system can be analyzed by numerical simulations. Here the following constraints were involved into

the model.

• Sensory dead zone for the angular displacement θ. We assume that the angular position perceived by the neural

system is

θperceived(t − τ) =
⎧⎪⎪⎨⎪⎪⎩0 if |θa(t − τ)| < Π
θa(t − τ) if |θa(t − τ)| ≥ Π . (18)

where θa is the stick’s actual angle and Π is the functional sensory threshold. Experimental estimations give

Π = 0.8deg for expert stick balancers14.

• Constraint on the maximum fingertip acceleration. We assume that the maximum control force is limited by

m0amax where amax ≈ 50m/s2 is the maximum acceleration of the fingertip.

• Constraint on the maximum fingertip jerk. We assume that the rate of change of the control force is limited by

m0 jmax, where experimental observations suggest that jmax ≈ 600m/s3 21.

Stabilizability conditions were investigated by systematic numerical simulations for a range of control parameters.

For each parameter combinations, numerical simulation was performed for five different initial conditions while |x| and

|θ|was monitored. We compared the effects of these constraints on stick balancing by estimating the maximum balance

time (BT), namely, the maximum balance time from five time-domain simulations with different initial conditions. A

stick was considered to be balanced if |θ| ≤ θlim and x ≤ xlim. During expert stick balancing θ never exceeds 20deg.

There we took θlim = 20deg. When x exceeds xlim, the stick is out of the reach of the subject’s arm. Therefore we

took xlim to be equal to the half-arm length, i.e. 0.335m21. The simulations were terminated if at least one out of the

five trials lasted for 240s. For a given parameter combination, the recorded balance time (BT) was the duration of the

longest simulation.
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Fig. 3. Effect of sensory deadzone (DZ) and limitations on the maximum acceleration (AC) and jerk (JC) on balance time (BT). The maximum BT

for five trials with different initial conditions is represented by the gray scale shown on the right. The linear stability boundary for the pendulum-cart

model with predictor feedback in the absence of constraints is given by the red line. (a), (c), (e), (g) are without dead zone, (a), (b), (e), (f) are

without acceleration limitation and (a), (b), (c), (d) are without jerk limitation. For all simulations we took kp,x = 20, kd,x = 40.

The results are summarized in Fig. 3. Cases with and without dead zone, with and without acceleration limitation

and with and without jerk limitation are considered, which give eight different cases. The stability boundaries for

the linear system are shown by red curve for reference. The maximum BT out of the five trials is presented by gray

shading. Black region indicates bounded oscillation of the stick with |θ| < 20deg for 240s. Acronyms DZ, AC and JC

refer to dead zone, acceleration constraint and jerk constraint, respectively.

It is observed that dead zone, acceleration limitation and jerk limitation all strongly affect the behavior of the

system. In the presence of dead zone, large control gains may lead to stick falling (see Fig. 3b). While the acceleration

constraint does not significantly change the region with BT of 240s (see Fig. 3c), the jerk constraint surprisingly

extends the region where BT of 240s occur (see Fig. 3e). When all the three effects are involved into the model (see

Fig. 3h), then the region of BT longer than 240s is significantly smaller than that of the region of linear stability.

Still, there are parameter combinations, which result in BT of 240s, but the linear system for the same parameters is

unstable.

In order to determine the critical length for the model, similar balance time diagrams were determined system-

atically for a 10 × 10 × 10 × 10 (four-dimensional) grid of the control gains kp,θ, kd,θ, kp,x, kd,x. If balancing with

bounded oscillations was possible for any of the 104 combination of the control gains, then the length of the stick was

decreased. The procedure was repeated until the maximum balance time out of the 104 trials was less than 240s. It

was found that the critical length for this model is �crit,PF = 6cm, which is much less than the experimentally observed

critical length (≈ 30cm). Note however, that this model is still lack of sensory uncertainties, imperfect actuation of
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Fig. 4. Demonstraton of the decreasing balance time for decreasing stick lengths.

the control force and the internal model of the predictor feedback was also assumed to match perfectly. Consequently,

the real critical length should be certainly larger.

In order to demonstrate the determination of the critical stick length for the model, a series of 3 × 3 balancing

time diagrams is shown in Fig. 4 for different stick lengths. It can be seen that the region of parameters associated

with bounded oscillations (i.e., the black-shaded region) shrinks with the decrease of the stick length � and disappears

between � = 5cm and � = 10cm. Note that this critical length is shorter than that observed during experimental stick

balancing tests. This difference is attributed to the unmodeled imperfections of the control process performed by the

nervous system during real stick balancing. Such imperfections are the inaccuracies of the sensory inputs and the

motor commands and the fluctuation in the feedback delay due to the spiking communication of the neurons. We

believe that implementing these imperfections into the model result in an increase of the critical length.

5. Discussion

Our observations add further support for role of a predictor feedback mechanism for expert human stick balancing.

Nonlinear effects, such as sensory dead zone and control force limitation by maximum fingertip acceleration and jerk,
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strongly affects the dynamics of the system and the concept of stability properties cannot be used in the same way as

for the linear system. Rather, the parameter regions are sought where the stick’s motion is bounded. It is shown that

the regions in the stability plane of control parameters where BT is at least 240s is qualitatively different from that of

the linear system when a dead zone and the limitations of acceleration and jerk limitation are included into the control

problem. Parameter regions that were linearly stable become unstable and prolonged BT’s exist for parameter values

where the system is linearly unstable. The final conclusion of the presented numerical study is that predictor feedback

is able to balance sticks significantly shorter than the traditional delayed PD controllers can do so even in the presence

of sensory dead zone and fingertip movement limitations. This observation strengthen the position of the predictor

feedback as candidate for the mechanism of human stick balancing.
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