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Abstract
Dynamical systems with less independent control input than degrees of freedom are called

underactuated. This Ph.D. thesis deals with the modelling and control issues of underactuated
dynamical systems. In trajectory tracking control of underactuated systems, the stability behaviour
have to be considered already during the control task definition. This work presents how the task of
the system have to be selected, or how should it be modified for the stable operations. For the control
of underactuated systems a novel technique is presented, which is based on a periodic variation of the
different control objectives. This periodic controller can be used in other problems effectively as well.
For example in case of the handling of driving torque saturation in trajectory tracking problems. One
of the main contributions of the work is a novel technique, which makes possible the direct stability
analysis of such systems, which are modelled by redundant coordinates. With this technique the
multibody systems can be investigated systematically and efficiently. It is shown that the techniques
of multibody systems are useful in the field of biomechanics as well. The investigation shows how
the energy consumption of human running is related with different parameters of the motion.

Keywords: underactuated mechanical systems, multibody systems, servo-constraints, internal
dynamics, actuator saturation, biomechanics



Kivonat
A doktori értekezés alulaktuált dinamikai rendszerek modellezésével és szabályozásával foglalkozik.

Alulaktuált rendszerek pályakövetési feladataiban már a feladat megfogalmazásakor figyelembe kell
venni a rendszer stabilitási tulajdonságait. A dolgozat bemutatja, hogy milyen módon kell a rendszer
feladatát megválasztani, esetleg módosítani a stabil működés eléréséhez. A probléma megoldásához
egy új, periodikus feladatmegosztáson alapuló módszer kerül bemutatásra. Ezen periodikus mód-
szer más gyakorlati problémákban is hatékonyan alkalmazható, mint például a robotok beavatkozó
egységeinek nyomatékszaturációját kezelő szabályozások esetén. Az értekezés a rendszer stabil-
itásának vizsgálatához egy új módszert mutat be, mellyel szisztematikusan vizsgálhatóak többtest-
dinamikai rendszerek. A dolgozat egyik alkalmazási feladata a futás biomechanikai modelljével
foglalkozik. Ez ugyancsak tekinthető alulaktuált rendszernek és ilyen módon használhatóak a ki-
dolgozott többtest-dinamikai rendszerek leírására szolgáló módszerek.

Kulcsszavak: alulaktuált dinamikai rendszerek, kinematikai redundancia, kiszámított nyomatékok
módszere, többtest-dinamikai rendszerek, periodikus szervó kényszerek, biomechanika
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Introduction

Underactuated systems appear in the engineering structures and also in the nature. A system which
has less independent actuators than the degrees of freedom said to be underactuated. Basically the
same definitions can be found in [1] and in [2].

It is easy to find examples for underactuated systems since the human motion contains various
underactuated problems. For example it is enough to examine the motion of the fingers where
there are three joints but only 2 pairs of tendons transmit the motion. The flight of birds are also
underactuated, since most birds can not elevate and can not rotate around the vertical axis without
forward flying. Thus they cannot follow an arbitrarily trajectory, it is also true for the swimming of
fishes. In field of engineering, cranes, ships and planes can be mentioned as the first characteristic
examples. In case of a conventional overhead crane the horizontal direction of the trolley and the
carried object is not independent and it could cause unwanted oscillations. The ships can not turn
without forward or backward motion like the fishes. When the cranes are mounted on ships which,
is quite frequent in the building of off-shore oil platforms these, problems are coupled and makes the
control more complicated.

The evolution of robotic industry required novel robots, which have underactuated behaviour.
The flexibility in robotics was appeared first in the parallel robot called Delta [3] which is doing pick
and place task on small objects like bon-bons with high operating velocity. Here the flexibility is used
to avoid getting in stuck in proximity of singular configurations. Here the flexibility avoids to getting
stuck in near of the singular configurations. The light weight makes possible the energy efficiency,
the agility and it makes possible the cooperation with humans like the KUKA LBR robot [4]. Since
environment compliance is needed, these robots contain compliant joints, which increase the number
of degrees of freedoms without additional actuators. During this development the engineers tried to
mimic the nature, for example the graspers [5] [6] are designed similar to a human hand. In these
applications the flexibility of the device or the not driven joints cause the underactuation.

Beside these examples the failure or saturation of an actuator, could be modelled as underac-
tuation in a classical robotic applications [1], [7], [8].

The appropriate motion control of the humans or animals is result of a long learning process
during childhood. This process could be much more difficult, when these skills have to be studied
again after an unfortunate accident or disease. In the rehabilitation process, generally the balancing
is the most difficult t task. In order to improve the balancing ability the physiotherapists use external
devices like the balanceboard [9]. This hemisphere based plate introduces a further unactuated joint
and makes the stable standing even more complicated. Since this further underactuation requires
much more attention from the patient, it could increase the speed of the learning process. As a much
more cheerful example sport device Jetovator can be mentioned [10] which is actuated by waterflow
and its underactuated behaviour makes the control difficult and challenging.

1



2 Introduction

In case of classical systems like cranes and ships the actuators are controlled by well trained
operators and in some cases the computers give only an assistance like in the input-shaping method
[11]. But most of underactuated robotic devices have to be controlled by computers and there is also
a need for automation in cranes and in ships. The development of control strategies for underactuated
systems were started in the early 90’s and it remains a scientifically challenging task.

It seems straightforward to ask- why do we not copy the control of the humans or the animals?
It seems easy to ask ourselves- how do we do it? The inventor of aviation Wilbur Wright gives us
the sad truth: I have asked dozens of bicycle riders how they turn to the left. I have never found a
single person who stated all the facts correctly when first asked. They almost invariably said that to
turn to the left, they turned the handlebar to the left and as a result made a turn to the left. But on
further questioning them, some would agree that they first turned the handlebar a little to the right,
and then as the machine inclined to the left they turned the handlebar to the left, and as a result
made the circle inclining inwardly.

The underactuation is a hot topic in robotics and in control methodology and several method
and procedures exists for their control. This work focuses on the dynamic behaviour of the controlled
underactuated systems, how these systems could be modelled for the controller, and how these could
be analyzed. The goal is to exploit the knowledge of the dynamic properties in the control.

This work was originally motivated by an European Union 6th Framework Project (IST-2006-
045530) project called Acroboter, coordinated by Department of Applied Mechanics.[12] The Ac-
roboter is a special underactuated service robot application, which is moving on an almost obstacle
free ceiling of a room, while transports the payload or a working unit similarly to gantry cranes.

The robot has to follow a trajectory in order to carry out the desired task. For the trajectory
tracking the well-known computed torque control [13] is applied as a feed-forward control action.This
model based controller requires appropriate dynamical modelling. Due to the high number of degrees
of freedom and because closed kinematic chain can also be found in the system the effective dynamical
modelling is also a key task. In favour of the generality the equation of motion is considered as a
system, which is described by the non-minimum set of (dependent) coordinates [14].

Similar to the geometric constraints which give the relation between the dependent coordinates,
the task of the controller is also given by additional constraints, the so-called servo-constraints. [15]
[16] [17] [18]. These two types of constraint can be handled in an integrated framework and could
give general method for the computation of the required control torque [19].

While the geometric constraints are naturally satisfied, the servo-constraints can not be fulfilled
in all cases. With the generalization of computed torque controllers for underactuated systems we
can see that some states of the system will not be specified by the control task. The dynamics
associated with these uncontrolled states is referred to as the internal dynamics of the system [20].
These internal states can cause the unwanted oscillations and the instability of the system. In the
literature there are several, mostly intuitive methods to handle this problem [21] [1]. Often the
original task is modified by using a linear combination of the original and some new servo-constraints
that aim to stabilize the internal dynamics of the system.

The main goal of this work is to explore the physical background of the instability of the internal
dynamics, and give a systematic tools to overcome this problem. The proposed control procedures are
based on the stability of the system and/or using mechanical performance measures like the effective
mass or the dynamic manipulability [22]. In the subsequent chapters of this work first the multibody
model based computed torque control and its solution technique will be introduced. Then for the
dynamical analysis a novel technique will be introduced which makes possible the direct eigenvalue
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analysis of multibody systems which are described by dependent coordinates. The application of this
stability analysis technique will give a hand in the modification of the servo-constraints in order to
get a feasible task. Beside the linear combination of the servo-constraints another possibility is the
periodic variation of the servo-constraints. In one period the original servo-constraint is considered
for realizing the desired motion, while in the subsequent period (which is typically shorter) a modified
servo-constraint is applied to stabilize the unstable internal dynamics. The switching pattern and the
period are chosen based on the numerical stability analysis. It is be shown that with application of
the periodic servo-constraint the performance of the trajectory tracking could be enhanced effectively.

It is presented that, the method of periodically varied servo-constraints can be useful in actuator-
saturation. Upon saturation, different sets of constraints are varied periodically to keep the reference
point of the robot on the desired trajectory. The pattern of the periodic control is adjusted according
to the variation of a new, manipulability type performance measure.

In the final chapter a different topic will be investigated. In that chapter the energy efficiency
of the running is in the focus. It is shown that the techniques of multibody systems are useful in
the field of biomechanics as well. The goal is to introduce a minimally complex biomechanical model
which can characterise the dynamic effects of foot strike pattern and shank angle at foot touchdown.
The investigation will show how the energy consumption of this locomotion is related with different
parameters of the running.





Chapter 1

Dynamic modelling of multibody systems

The aim of this chapter is to introduce the applied multibody modelling and numerical simulation
techniques of the presented work.

The parametrization of the equation of motion always depends on the aim of the investigation.
The formulation must fit to the purpose of the motion analysis: in case of a controller design the
direct input-output relationship has to appear, in case of Hardware-in-the-loop problem the measured
variables have to be involved, in case of a motion simulation the structured layout and the time
consumption of the simulation are the key problems. In all cases the chosen parametrization can be
different.

The complexity of a dynamical model depends on the chosen coordinates, which have a major
influence on the structure of the model and on the efficiency of numerical simulations. Often the
chosen coordinates that are used to describe the configuration of the model belong to the contained
kinematic pairs [23] [24]. These are called joint coordinates, which fully determine the pose of the
system. If the number of the arbitrarily chosen coordinates is equal to the degrees of freedoms
(DoF), then these joint coordinates are called the minimum set of generalized coordinates or shortly
the generalized coordinates.

The position and the orientation of the end effector of an industrial robot can be described by
using for example by Euler angles or by Roll-Pitch-Yaw [24] angles in the global coordinates system.
These orientation representation formulations use three independent parameters for representing the
orientation of a rigid body. However, in practical applications the Euler parameters [13] or the closely
related quaternion and axis-angle based representations, which use four dependent scalar parameters,
are more useful. The advantage of some redundant parameter based representations is that they can
be used in case of singular configurations.

In fast, real time simulation it is important that the equation of motion have to be programmable
in a way that computational costs are minimal, and computations may run parallel. In case of
moderately complex multibody system the so-called natural coordinates [14] based parametrization
is a commonly used approach. In that method the coefficient matrices do not contain transcendental
and trigonometric terms which usually require additional computation efforts. In addition the mass
matrix of a dynamical system modelled by these coordinates is almost always constant [14]. With
this parametrization most of the control problems can be formulated efficiently.

In redundant coordinate based description techniques the holonomic or non-holonomic con-
straints will appear between the dependent coordinates and the equation of motion will be a Differ-
ential Algebraic Equation (DAE) instead of an Ordinary Differential Equation (ODE). The appli-
cation of modelling techniques which are based on dependent coordinates is common in commercial

5



6 Dynamic modelling of multibody systems
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ṽ

˜̃v
u

Figure 1.1. Velocity components associated with the constrained and admissible directions

multibody modelling softwares like ADAMS (Automated Dynamical Analysis of Mechanical Sys-
tems) [25], SIMPACK [26], or Matlab Simscape Multibody [27]. The multibody dynamics (MBD)
softwares are become as standard tools as the Finite Element Analysis (FEA) technology, especially
in the automotive industry [28].

These software packages provide a multibody simulation environment for mechanical systems,
such as robots, vehicle suspensions, construction equipment and even for biomechanical models.
The CAD models can be imported and the MBD simulation can be combined with finite element
calculations for the stress analysis. In these commercial softwares the applied numerical methods and
their effects are not exactly known, therefore it is preferred to develop individual MBD environments
[29], [30] for academic purposes.

1.1 Equation of motion

A general multibody system can contain holonomic and non-holonomic constraints [23]. In the
presented work only holonomic rheonomous systems will be investigated. Using the principle of
virtual power [23] and the base of Newtonian mechanics, the fundamental equation of a constrained
system can be written as ∫

m

δvT(∆mv̇ − fconstraint − factive) = 0, (1.1)

where δv is the so-called virtual velocity, which is the difference of two possible velocities δv = ṽ− ˜̃v
as illustrated in Fig. 1.1, ∆m is an infinitesimal mass element of the system, factive and fconstraint
represents the active and passive forces respectively. This formula is integrated over the mass volume
of the system. Let us introduce q ∈ Rn coordinates to describe the position of the system and with
the elaboration of Eq. (1.1) the equation of motion of a holonomic multibody system can be written
in Lagrangian formulation.

Using dependent descriptor coordinates q ∈ Rn the equation of motion of a holonomic multibody
system can be written as

d

dt

∂T

∂q̇
− ∂T

∂q
= Q(q, q̇, t) + Qc(q, t), (1.2)

where T is the kinetic energy of the system and Q represents all the non-inertial and non-constraint
forces. Since the descriptor coordinates are dependent, the constraint forces Qc do not disappear,
because nothing guarantees that δv is not perpendicular to fconstraint. In the related literature this
equation is called as Lagrange’s equations of the first kind. The connection between the bodies and
the connection between the system and the environment are represented by constraints (φ1, . . . , φl)
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Figure 1.2. Schematic figure of a general multibody system

(see Fig. 1.2). Constrains (ψ1, . . . , ψk) are the rigid body constraints [14]. These constraints are
required for those bodies of the system which are modelled by dependent coordinates, e.g. in case
of natural coordinates a 6 DoF rigid body is modelled by 12 coordinates. All of these l + k = m

number of constraints are involved in the following array

ϕ(q, t) = 0 , ϕ(q, t) ∈ Rm. (1.3)

The constraint force can be expressed as

Qc = −ΦTλ , where Φ =
∂ϕ

∂q
. (1.4)

In the expression (1.4) Jacobian Φ is orthogonal to the constrained surfaces thus it gives the direction
of the constraint forces and λ is the array of Lagrange multipliers, which are proportional to the
magnitude of the constraint forces. After the elaboration of Eq. (1.2) the equation of motion can be
written in the general form

Mq̈ + c + ΦTλ = Q , (1.5)

where M is the mass matrix and c is the vector or nonlinear inertial forces.
Because of presence of dependent coordinates, equation of motion (1.5) is subjected to the

geometric constraints (1.3). Thus dynamic equation (1.5) with algebraic condition (1.3) forms a
Differential Algebraic Equation. The numerical integration of DAEs is much more complex than a
simple ODE [31]. The problem is caused by the unkown algebraic variable λ. It seems straigthfor-
ward to use the Udwadia-Kalaba multibody method [32] when Lagrange multipliers do not appear.
However, in that case the constraint relations are formulated at the acceleration level and due to the
numerical integration the constraint equations can not be satisfied precisely.

In the solution of the DAE problem the analysis of differentiation index can help for the cat-
egorization. The differentiation index can be constructed using different definitions. For example,
in order to find consistent initial value, it is often necessary to consider the derivatives of some of
the component functions of the DAE. The highest order of a derivative that is necessary in this
process is called the differentiation index [31]. Otherwise based on reference [33], the differentiation
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index is equal to the minimal number of differentiations of the constraints in order to get an ODE
problem for all of the variables. Using the Lagrange equation of motion, when holonomic (geometric)
constraints are applied, this index is 3. There are many methods and schemes that are used for the
numerical integration of DAE-s applied in mechanical systems. Some well known methods are briefly
introduced in the following sections.

1.2 Numerical solution techniques

There are approaches for the numerical solution of the system (1.5) and (1.3). One keeps the origi-
nal descriptor coordinates, and the other one reduces the coordinates with appropriate selection or
transformations. In all of the methods, the key task is to handle (eliminate or express) the algebraic
variable λ, namely the unknown constraint-forces.

Original coordinate set

Keeping the original coordinates descriptor coordinates the Lagrange multiplier can be eliminated
with the relaxation of the constraint forces, as performed in the penalty method [14], [34], [35]. The
penalty method replaces a constrained problem by a series of unconstrained problems whose solutions
ideally converge to the solution of the original constrained problem. The problem with the penalty
methods is that they require the use of large penalty numbers and high stiffness terms to keep the
constraint violation at a satisfactory level. These penalty terms will make the equations stiff and will
introduce numerical problems.

In the method of Lagrange multipliers [14] the constraints are considered on the acceleration
level for the expression of the differential variable λ practically for the expression of the constraint
forces.

The method proposed in [14], [36] keeps the original coordinates and it decomposes the admis-
sible and constrained directions. The common point of these methods is the index reduction because
their transforms a DAE with differentiation index-3 into an index-1 DAE system.

Newly introduced coordinate set

In [37] and [36] a coordinate transformation is carried out. With this step the unknown constraint
forces will be eliminated.

In general it is easier to introduce the independent variables at velocity level [36]. The in-
troduction of new independent generalized coordinates could be complicated in many cases due to
the nonlinear position level transformation. An alternative possibility is the coordinate partitioning
method which is originally introduced by Wehage and Haug in [38], when the independent coordi-
nates are selected from the dependent set of coordinates. The method leads to a minimum set of
constraint reaction-free dynamic equations in terms of the independent coordinates. In addition, the
differential variables λ can also be determined. Since the coordinates depend on the configuration in
[39], a special procedure, the so-called projective criterion is given for the selection of coordinates in
order to enhance the computational efficiency.

In the subsequent sections the applied methods of this work will be summarized briefly: the
transformation to the independent coordinates; the method of Lagrangian multipliers; and the coor-
dinate partitioning method.
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1.2.1 Formulation with independent coordinates

The DAE equation motion (1.5) together with (1.3) can be reformulated in the space of independent
coordinates as it is presented in [36]. The coordinate transformation can be done using the following
steps. The connection between the kinematic variations in the space of minimum (independent) set
p and non-minimum (dependent) set of generalized velocities can be written as

δq̇ = B(q)δṗ(q), (1.6)

where the Jacobian matrix B can be constructed as the function of the independent coordinates.
With this transformation the virtual power of the system (1.5) can be written as

δṗTBT(M(Ḃṗ + Bp̈) + c + ΦTλ−Q) = 0 . (1.7)

Since δṗ can be considered as an independent kinematic variation, the constraint force are eliminated
with the transformation of the forces the equation of motion as:

BTMBp̈ + MBṗ + BTc = BTQ . (1.8)

The above formula (1.8) is an ordinary differential equation which can be directly used for the
numerical simulation.

The main difference between the coordinate partitioning [38] technique and the above summa-
rized method is that in case of the coordinate partitioning technique new coordinates are selected
from the original coordinates using the constraint equations, whereas here partly or entirely new set
of coordinates are introduced. Despite both method can be used generally, both of them require
further non-unique intuitive steps during the transformation.

Similar to the selection of the dependent set of coordinates q, the selection of the independent
set of coordinates p is also intuitive. This intuitive selection can be quite complex especially in
closed-loop mechanisms.

1.2.2 Method of Lagrange multipliers

One commonly used technique for the solution of a DAE problem is the so-called method of Lagrange
multipliers [14]. The dimension of generalized coordinates is n, and the dimension of the equation
(1.5) is also n, and it contains n differential variables and further m algebraic unknowns, namely the
Lagrange multipliers. Equation (1.5) is augmented by additional m constraint equations (1.3). In
general an index-1 DAE problem is solvable [33]. Thus, in case of geometric constraints, when the
DAE index is three, a second order index reduction is required, which can be achieved by the direct
time differentiation of the constraints (1.3) twice. For this the constraint equation at the acceleration
level can be written as

ϕ̈ ≡ Φq̈ + Φ̇q̇ + π̇ = 0, (1.9)

where π = ∂ϕ/∂t. Equation (1.5) and (1.9) can be combined as
[

M ΦT

Φ 0

][
q̈

λ

]
=

[
Q

−Φ̇q̇− π̇

]
. (1.10)
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Figure 1.3. Velocity components associated with the constrained and admissible directions

Now we have the same number of equations (n + m) as unknowns (n + m). The leading matrix is
symmetrical (if M is symmetrical) and can be very sparse in many practical cases. From equation
(1.10) the accelerations q̈ and a Lagrange multipliers λ can be expressed. Since equation (1.9) is an
unstable equation and round-off errors appear during the integration, the position and velocity level
constraints will not be perfectly satisfied. Therefore the numerical integration needs stabilization.

Stabilization of constraints

The best known and practical idea for the stabilization of the constraints is the so called Baumgarte
[40] stabilization technique when the constraint condition at the acceleration level (1.9) is augmented
with linear spring- and damper-like terms

ϕ̈+ 2α ϕ̇+ β2ϕ = 0, (1.11)

where α and β are appropriately chosen constants. By using (1.11) instead of (1.9) the equation
(1.10) can be written as

[
M ΦT

Φ 0

][
q̈

λ

]
=

[
Q

−Φ̇q̇− π̇ − 2α ϕ̇− β2ϕ

]
. (1.12)

Reference [14] suggests that the Baumgarte parameters should be the same and should be
between 5− 20. In [41] a detailed study is provided for the selection of Baumgarte parameters. The
Baumgarte stabilization is general, easy to implement and numerically efficient. Its computational
cost is a small fraction of the total computational time. Furthermore it does not fail near singular
configurations or in the presence of redundant constraints.

The introduced artificial spring and damper can influence the motion in the non-constrained
directions as well, which can be incorrect. Despite this potential problems the simplicity of the
method makes it a widespread technique.

In order to overcome the numerical instability, in the method of Lagrange multipliers there are
numerical schemes for mixed systems which allow to adding the algebraic equations to the DAE
system (1.10) like in [42]. However these techniques are not used widely because they are computa-
tionally expensive and usually they have an over-damping effect.
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1.2.3 Projection into admissible and constrained motion spaces

A possible approach [36], which also result the equation of motion in index-1 form, is based on the
separation of generalized virtual velocity δq̇ into admissible part δqa, and constrained part δq̇c,
generalized velocities as

δq̇ = δq̇a + δq̇c. (1.13)

These directions are depicted in Fig. 1.3. The geometrical interpretation of this separation is ex-
plained in more detail in [43].

The elements of these vectors can be constructed based on the constraint Jacobian Φ because
the Jacobian is orthogonal to the subspace defined by the constraints. Vectors δq̇a and δq̇c are
the linear combination of the original virtual velocity δq̇. By means of algebraic calculations, the
following assumption can be easily deduced as

δq̇ = (I−Φ†Φ)δq̇ + Φ†Φδq̇, (1.14)

where Φ†Φ gives the projection onto the constrained directions and as a complement I−Φ†Φ defines
the projection into the admissible directions. In (1.14) Φ† is the Moore-Penrose pseudoinverse of Φ.
The Moore-Penrose pseudoinverse [44] is a generalized inverse which is quite common in robotics,
but it is based on a purely mathematical concept. In order to preserve physical consistency during
the numerical calulations the mass matrix may be employed as the metric for the tangent space of
the configuration manifold. Based on [36] and [44] the generalized inverse can be derived as

Φ† = M−1ΦT(ΦM−1ΦT)−1. (1.15)

This expression uses physical considerations in order to avoid operations with different units. This
is the reason why the mass matrix M appears in the calculation. In the following

Pa = I−Φ†Φ (1.16)

will be considered as a projection operator which projects into admissible directions. The following
operator projects into the constrained direction

Pc = Φ†Φ. (1.17)

In algebraic point of view it means that Pa projects into the nullspace of the constraint Jacobian Φ.
The principle of the virtual power can be expressed from the equation of motion (1.5)

δq̇T(Mq̈ + ΦTλ+ c−Q) = 0. (1.18)

By substituting the decomposition (1.13) into (1.18) the equation of motion reads as

δq̇T
a (Mq̈ + ΦTλ+ c−Q) + δq̇T

c (Mq̈ + ΦTλ+ c−Q) = 0. (1.19)

Since in the constrained direction the virtual velocity qc necessarily satisfies the constraints, the
variation of it is zero and consequently the second part of (1.19) is identically zero. Thus the
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equation of motion in the admissible space reads as

δq̇ᵀPT
a (Mq̈ + ΦTλ+ c−Q) = 0. (1.20)

The admissible virtual velocities are orthogonal to the constraint forces, thus these forces have no
virtual power. Thus after the elimination of the algebraic variable λ the equation of motion can be
written as

PT
aMq̈ + PT

a c−PT
aQ = 0. (1.21)

The direct inversion (for the expression of accelerations) of the projected equation (1.21) is not
straightforward because the matrix PT

aM is singular. In order to handle the singularity, first we have
to further elaborate the first term PT

aM of (1.21) using the generalized pseudoinverse (1.15)

PT
aMq̈ = Mq̈− (ΦM−1ΦT)−ᵀΦM−ᵀMq̈. (1.22)

Using the equation on the acceleration level constraint equation(1.9) the projection of the inertial
forces finally reads as

PT
aMq̈ = Mq̈− (ΦM−1ΦT)−ᵀ(−Φ̇q̇−Φt). (1.23)

With this expansion the equation of the admissible motion can be derived in the following form

Mq̈− (ΦM−1ΦT)−ᵀ(−Φ̇q̇−Φt) + PT
a c−PT

aQex = 0. (1.24)

Because in Eq. (1.24) the constraint equations are considered at the level of acceleration it is
necessary to ensure the fulfilment of the constraint equations. In [36] a simple projection based
configuration and velocity correction is proposed after each integration step. The advantage of the
applied method is that using the non-minimum set of descriptor coordinates the terms has a simple
structure and their elements can often be derived in closed form. It also needs some control process for
satisfying the constraints at position and velocity levels, but there is no need for tuning of additional
parameters for stabilizing the constraints during integration.



Chapter 2

Underactuated mechanical systems

Underactuated systems form a class of mechanical systems in robotics and control theory. As a
fundamental definition an underactuated system has fever number of independent actuators than the
degrees of freedom n [45]. In this case, the system is said to be trivially underactuated [2]. Besides
the trivially underactuated systems other control problems can be modelled as underactuation like
joint flexibility or saturation, as it will be shown later.

2.1 Possibilities for the characterisation of underactuated systems.

The need for the categorization of different problems in order to choose the most appropriate tool
or technique is common in every field of science. It is true for underactuated systems as well. In the
followings, an overview will be given on the possible categorizations and analyzing approaches.

2.1.1 Input-output location

Based on the spatial location of the actuators and the controlled coordinates collocated and non-
collocated underactuated systems are distinguished [45], [46].

For several manipulators the joints can be partitioned unequivocally into active qa, and passive
qp, sets (see Fig. 2.1). This is an actuation based separation.

During the control-task based separation coordinates are separated into controlled qc and un-
controlled ones qu. The time history of the controlled coordinates are explicitly specified in the
control task, while there isn’t any prescription for the uncontrolled coordinates.

q1

q2

q3

q4

q1

q2

q3

q4

q1

q2

q3

q4 Controlled

Uncontrolled

Active joint

Passive joint

Figure 2.1. Collocated case (left) , Non-collocated case (centre), Mixed case (right)
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If qa ≡ qc and qp ≡ qu, the system has collocated output. If qp ≡ qc and qa ≡ qu, the system
is called non-collocated as it is seen in Fig. 2.1. Physically it means that the output have to be
associated only with the active or only with the passive joints. If the output is related to both the
passive and active joints, this separation is not possible. Furthermore in many cases the coordinate
separation to active and passive ones is difficult or not possible.

2.1.2 Input-output dependence

A more systematic categorization technique uses the differentiation order of dependence between the
inputs and the outputs. It is the so called relative degree [47] [20].

For the presentation the concept of relative degree, let us consider a general multiple input -
multiple output (MIMO) control system:

ẋ = f(x) + g(x)u, (2.1)

where x = [q, q̇]T is a state space vector. If we formulate the equation with independent coordinates,
the dimension of the state x ∈ R2g.

The output y ∈ Rl that corresponds to the desired task is described by the function:

y = h(x). (2.2)

The relative degree ri for the ith output yi(x) means the minimum number of time differentiation
for which any element of the output u appear explicitly in the differentiated output [20]. Mathemat-
ically the series of differentiations can be formulated with the so-called Lie derivatives (directional
derivative)[48]. Using equation (2.1) of the controlled system, the total time derivative of the output
function (2.2) can be written as

ẏ =
dh(x)

dx
ẋ =

dh(x)

dx
f(x) +

dh(x)

dx
g(x)u. (2.3)

After differentiating the output ri times, the control input u appears, as it can be seen here

yi = hi(x)

ẏi =
dhi(x)

dx
f(x)

ÿi =
d2hi(x)

dx2
f2(x)

...

y
(ri−1)
i =

dri−1hi(x)

dxri−1
f ri−1(x)

y
(ri)
i =

drihi(x)

dxri
f ri(x) +

drihi(x)

dxri
g(x)u

(2.4)

For brevity let us use the following notations

Lfh(x) =
dh(x)

dx
f(x) and Lgh(x) =

dh(x)

dx
g(x). (2.5)
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With this notations the input output relationship can be written in the following compact form

y
(ri)
i = Lrif h(x) + LgL

ri−1
f h(x)u. (2.6)

Practically this systematic calculation process results in the method of partial feedback linearization
[20]. In case of MIMO systems this calculation have to be carried out for all outputs yi; i = 1 . . . l. The
relative degree vector r = [r1, . . . , rl], represents the relation between the inputs and outputs. If the
derivatives for all outputs are calculated, an input-output normal form can be constructed and a new
state variables z = [y1, ẏ1, · · · y(r1)1 . . . yl, ẏl · · · y(rl)l ]T can be introduced. With this transformation
the feedback law can be constructed [20, 47] in order to eliminate to non-linearities of a general
dynamical system.

The relative degree analysis helps us to understand how the input is related with the desired
task (desired variable) as it will be used later. Controlled systems can be categorized based on their
largest relative degree.

2.1.3 Unobservable states

In the field of underactuated systems, it is quite common to use the notion of internal dynamics
[20] and investigate its behaviour. In order to understand the meaning of internal dynamics, we
take a general n dimensional dynamical system. If we have a one dimensional output y, based on
expression (2.4), the control problem can be described with r number of states. Hence, if r < n,
then r − n number of states is not required for the exact definition of the output. The states of
the internal dynamics are denoted with η = [η1, . . . , ηn−r]

T. If there is internal dynamics (r < n),
the full state input-output linearisation is not possible. Therefore, a part of the system dynamics
(described by η) does not appear among the control goals, because these unobservable states cannot
be seen from the external input-output relationship. This part of the dynamics will be called as
internal dynamics [20]. For the clarification, it have to be noted that these unobservable states have
to be also measured for the control. To generalize the concept of internal dynamics to multiple
output (y ∈ Rl) system let us summarize the elements (taxicab norm) of the relative degree vector
z = [y1, ẏ1, · · · y(r1)1 . . . yl, ẏl · · · y(rl)l ]T as

r̃ = ||r||1 =
l∑

i=1

ri. (2.7)

In this case the internal dynamics exists if r̃ is less than the dimension of the state vector x (2.1).
In the thesis the dimension of the input u is l and the task (output) is also l dimensional for

the investigated applications. For most of the problems in the thesis the relative degree vector of the
system is r = [2, . . . ,2]T. In that cases the number of unobservable states is 2 j = 2 g − 2 l, where
g represents the DoF. Physically it means that j number of coordinates and the corresponding
velocities can describe the state of the internal dynamics.

Again, the internal dynamics is a special part of the dynamics that cannot be seen in the external
input-output relationship. It is a similar to the definition of flatness systems in nonlinear control
theory [20, 49]. Flatness is an extension of controllability from linear systems to nonlinear systems.
A system is differentially flat when the system has flat output. With a flat output all states of the
system can be expressed with finite number of derivations. Using the notion of internal dynamics a
system is differentially flat when there is no internal dynamics.
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The task of the control design is to ensure the stability of the whole systems. This means
that the unobservable states have to be bounded. Thus the system can be stabilized if the internal
dynamics is stable. A dynamical system (2.1) can be minimum-phase at an equlibirium point x0 if
the zero dynamics in η = 0 is exponentially stable. Otherwise it is called non-minimum phase [1],
[50]. The internal dynamics is called zero dynamics if there is an initial condition x0 and control u

with which the system output y = h(x) is kept constant. Physically it means that the output can
be kept constant independently from the internal dynamics.

It have to be noted that the internal dynamics and its stability depend on the choice of the
output function (2.2).

2.1.3.1 Representative example

For the demonstration of the relative degree analysis, an underactuated benchmark example is studied
in the followings. This simple problem can be used to understand the physical background of several
control problems such as control of flexible robot manipulators [13]. This linear underactuated
system contains two blocks connected by a spring as shown in Fig. 2.2. Two studies are carried out
in case of this example. The first one analyzes the collocated control and second one analyzes the
non-collocated problem (see in Sec. 2.1.1).

For the dynamical modelling, the absolute displacement of the blocks are chosen as general
coordinates q = [x1, x2]

T.
The equation of motion can be easily deduced as

[
m1 0

0 m2

][
ẍ1

ẍ2

]
+

[
k(x1 − x2)
k(x2 − x1)

]
=

[
1

0

]
F. (2.8)

In case of the collocated control the the first block of the system is controlled and the output is given
as

y = x1, (2.9)

where qa ≡ qc = [x1], qp ≡ qu = [x2].
The relation between the l = 1 dimensional input u = [F ] and the output can be defined with

the differentiation of the output (2.9) similar to the expressions in (2.4) as
[
ẏ

ÿ

]

︸ ︷︷ ︸
z

=

[
ẋ1

(F − k(x1 − x2))/m1

]

︸ ︷︷ ︸
χ(q, q̇)

. (2.10)

In this case the control input F appears in the second derivative of the output and the dimension of
the controlled states z is 2, thus the sum of elements of the relative degree vector r̃ = 2. Since the
state vector x = [q, q̇]T of the system is 4-dimensional, internal dynamics is present in this control
task.

The second scenario when the motion of the second block is controlled it is called non-collocated
case (see in Sec. 2.1.1). Here the output can be written as

y = x2 (2.11)
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Figure 2.2. Control of a two-mass problem

Along the lines of Eq. (2.4) the relation between the input and the output can be expressed as



ẏ

ÿ
...
y

yIV




︸ ︷︷ ︸
z

=




ẋ2

k(x1 − x2)/m2

k(ẋ1 − ẋ2)/m2

k(F+k(x2−x1)
m1

− ẍ2)/m2




︸ ︷︷ ︸
χ(q, q̇)

, (2.12)

Here input F appears first in the fourth time derivative of the output. Thus the relative degree sum
r̃ = 4 in this control problem (see Eq. (2.7)). In [51] it is called pure tangential realisation of the
servo-constraints. Based on the definition of the internal dynamics (see Sec. 2.1.3) there is no internal
dynamics here and the problem is differentially flat [49]. Using an other terminology and assuming
that both manifolds are smooth the Eq. 2.12 is a diffeomorphic coordinate transformation [52] while
from z = χ(q, q̇) equation with knowing z all elements of the state (q, q̇) can be expressed.

Despite the output can expressed directly from (2.12) it has practical drawbacks. Here the first
requirement is that the desired path have to be C4 continuous, which is easily feasible. But in order
to carry out a stable controller the second and the third derivatives have to be measured, which is
hardly feasible in a real robotic system. In the later sections such systems will be analyzed when
there is internal dynamics and their relative degree is 2 for all input-output pairs r = [2, . . . ,2]T.

2.2 Inverse dynamics for trajectory tracking control

It is quite common to use the solution of the inverse dynamics problems in trajectory tracking control
of fully actuated manipulators. From the inverse dynamics calculation the required forces or torques
can be calculated. The inverse dynamics calculations mostly referred as Computed Torque Control
(CTC) [13, 24].

The equation of motion of a general controlled mechanical system is given in the following form

M(q)q̈ + c(q, q̇) = Q(q) + H(q)u . (2.13)

The desired variables qd, q̇d, q̈d are determined from the prescribed task (2.2). We assume that
control input matrix H is a square matrix and invertible, so the nominal value of required control
input can be expressed as

un = H(qd)−1
(
M(qd)q̈d − c(qd, q̇d)−Q(qd)

)
. (2.14)
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Figure 2.3. Scheme of inverse dynamics control in fully-actuated case

The modelling errors and disturbances can be eliminated with an additional simple linear compen-
sator like a proportional-derivative (PD) controller [13] as

u = un + uc, where uc = H(qd)−1(qd)
(
Kp(qd − q)−Kd(q̇d − q̇))

)
. (2.15)

The result of Eq. (2.15) is identical with the feedback linearization [13]. The operation of the control
is visualized in Fig. 2.3.

2.2.1 Inverse dynamics for underactuated systems

Let us consider (2.13) again. The rank of matrix H is equal to the number of independent actuators
which is l. Because in case of an underactuated system the number of the independent actuators
is less than the degrees-of-freedom (l < g) H is a rank deficient matrix and the inverse dynamics
(2.14) cannot be computed directly as in Eq. (2.14). In the control definition, we suppose that the
dimension of the task (2.2) is equal to number of inputs l which is less than the degrees of freedom.
Therefore the solution of the inverse kinematics is not unique and it is not possible to determine all
of the values of the desired variables qd, q̇d, q̈d based on pure kinematic equations.

There are extensions of CTC method for underactuated systems in the literature. One possibility
is to use the so-called partial feedback linearisation [45]. An other method is called Computed
Reference Computed Torque Control (CRCTC) [46]. In this method the coordinates are separated
to controlled and uncontrolled ones. The desired value of the controlled coordinates are known from
the task and the method calculates a desired value for the uncontrolled coordinates on-line. With the
computed desired values for uncontrolled coordinates the inverse dynamics problem can be solved.
The main drawback of the CRCTC method is that the equation of motion have to be formulated
with minimum set of coordinates which may be disadvantageous in complex systems.

In case of dependent set of coordinates, it is a useful approach to use the so-called servo-
constraints [15, 53, 54] for describing the desired task. They are also called as control or program
constraint [18]. These constraints are mathematically equivalent to the geometric constraints, how-
ever, the fact that they do not belong to physical interconnections of bodies makes an important
difference. The servo-constraints, for example can describe the tool-center-point (TCP) [13] trajec-
tory of the robot, and the violation of these constraints is in relation with the tracking error. Let us
consider the servo-constraints in the form

γ(q, t) = p(q)− h(t) = 0 , (2.16)
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Inverse Dynamics
calculations + compensation

(eq. 2.19)
System

q, q̇u

Path planning

qd

trajectory

∫ ∫q̇d

q̇d
q̈dDesired acceleration

computation (eq. 2.18)

q, q̇

Figure 2.4. Scheme of the direct method for underactuated systems

where p(q) describes the output, e.g., position and orientation of the TCP of a robot, as function of
the generalized coordinates, and h(t) is the desired output with explicit time dependence. Using the
idea of the Lagrangian multipliers, similarly to the solution of Eq. (1.10), the servo-constraints can
be expressed at the acceleration level too, as follows

γ̈ = Γ(q)q̈ + Γ̇(q)q̇− ġ(t) , (2.17)

where Γ = ∂p/∂q is the Jacobian associated with the servo-constraints and g = ∂h/∂t . Analogue
to the numerical solution of DAE equation, a DAE-index reduction is achieved with the higher
order representation of the servo-constraints (see: Sec. 1.2). The calculation of the control force
basically have two different ways. In the first method [17, 54] the desired values are determined for
all coordinates at position, velocity and at acceleration level as well. In this approach the controlled
and non-controlled dynamics have to be separated. Using the equation of motion (2.13) and the
servo-constraint equations at the level of acceleration (2.17) the dynamics of the controlled system
is described by [

N(q) M(q)

Γ(q)

]
q̈ =

[
N(q)

(
Q(q)− c(q, q̇)

)

ġ(t)− Γ̇(q, q̇)q̇

]
= 0, (2.18)

where matrix N is orthogonal to the control input matrix H thus NH = 0. Equation (2.18) gives the
prescribed values for the accelerations q̈d. From that the desired values for the position qd and for
the velocity q̇d can be integrated on-line in every time step. For the integration of desired variables a
backward Euler differentiation scheme is used in several publications [17] [54]. Practically it means we
compute the desired values for all DoFs. These are the computed desired variables. As a combination
of (2.14) and (2.15) using a generalized inverse the required control input can be calculated as in
[46]:

u =
(
HTH

)−1
HT
(
M(qd)q̈d − c(qd, q̇d)−Q(qd)−KP(qd − q)−KD(q̇d − q̇))

)
. (2.19)

The scheme on Fig. 2.4 shows the operation of the method.
The other approach for the calculation of the control force uses the actual "measured" state

of the system and desired trajectory. In this approach the calculation of the control force u similar
to the method Lagrange multipliers in Eq. (1.5). Combining the equation of motion (2.13) and the
servo-constraint on the level of acceleration level (2.17) we can obtain the following form:

[
M(q) −H(q)

Γ 0

][
q̈d

u

]
=

[
−c(q, q̇) + Q(q)

−Γ̇(q)q̇ + ġ(t)−KDγ̇(t)−KPγ(t)

]
, (2.20)

where kP and kD terms are the gains of the applied controller. Basically in the controller (2.20)
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Figure 2.5. Scheme of the extension of Computed Torque control for underactuated systems

the term −KDγ̇(t)−KPγ(t) is the so-called synthetic input [20], while the remaining terms provide
enough force to keep the current state of the system q, q̇.

Here the control inputs u play a role as the Lagrange multipliers. Equation (2.20) only depends
on the measured variables q and q̇, the given task, and its derivatives γ andγ̇. With this method
the scheme of the control is simplified to a simple computed-torque-control shown in Fig. 2.5.

2.2.2 Extension for redundant coordinates

In the field of multibody systems it is quite common to use the non-minimum set of descriptor
coordinates. Similarly to equation (2.20) the equation of motion in differentiation index 1 form
(1.10) can be extended with the servo-constraints at the acceleration level




M ΦT −H

Φ 0 0

Γ 0 0







q̈d

λ

u


 =




−c + Q

−Φ̇q̇− π̇
−Γ̇q̇ + ġ(t)−KDγ̇(t)−KPγ(t)


 . (2.21)

From equation (2.21) the required control force u can be calculated. Comparing the expression with
Eq. (1.12), here the Baumgarte stabilisation is not needed for the geometric constraints . This is
because the values of coordinates q and velocities q̇ are measured and therefore the constraints are
naturally satisfied, or at least the constraint error is not accumulating. During the dissertation this
control technique will be used in the trajectory tracking problems.



Chapter 3

Stability investigation of multibody
systems

Stability analysis has an important role in the control design of multibody systems [37]. This section
proposes a stability analysis method of the index-3 DAE problem described by Eq. (1.5)-(1.3). The
application procedure of the method for both continuous and discrete time systems is presented.

In the stability analysis, various stability definitions are used or defined depending on the
problem. The most used ones in controlled systems are the Bounded Input Bounded Output [55]
(BIBO) and the Lyapunov stability theory [56]. When the system is BIBO stable, then the output
will be bounded for every input to the system that is bounded. This technique is especially used in
linear switched systems.

The Lyapunov theory is treating the stability of solutions near to a point of an equilibrium [33].
Consider the ordinary differential equation with initial condition

ẋ = f(x, t), x(0) = x0. where x ∈ Rn (3.1)

It is also supposed that f has an equilibrium at xe and f(xe) = 0. Then,

1. the equilibrium is said to be Lyapunov stable if for every ε > 0, there exist a δ > 0 such that,
if ||x0 − xe|| < δ, then for every t ≥ 0, ||x(t)− xe|| < ε. The schematic drawing is depicted on
Fig. 3.1a.

2. The equilibrium is said to be quasi-asymptotically stable if exists such a δ > 0 that, if
||x0 − xe|| < δ, then for every t ≥ 0, lim

t→∞
||x(t)− xe|| = 0. The schematic drawing is depicted

on Fig. 3.1b.

An equilibrium is asymptotically stable if it is both Lyapunov and quasi-asymptotically stable as it
is drawn on Fig. 3.1c.

In case of a nonlinear differential equation the analytical solution is not known thus the stability
of an equilibrium can not be determined. In order to overcome this problem, a scalar energy-like
function is constructed and it is called the Lyapunov function. With the Lyapunov function the
stability of an equilibrium can be proven [56]. However, in complex problems it is hard to prove that
a Lyapunov function exists and is also hard to construct an appropriate function.

In case of a linear system, the stability can be proven easier. The Hartmann-Grobman theorem
[57] states that the behavior of a dynamical system in a neighbourhood of a hyperbolic equilibrium

21
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B(0, δ)
B(0, ε)

(a) Lyapunov stability

B(0, δ)

(b) quasi-asymptotic stability

B(0, δ)

B(0, ε)

(c) asymptotic stability

Figure 3.1. Stability definitions

point is qualitatively the same as the behavior of its linearization near this equilibrium point. Function
f can be approximated with its Taylor series [58] around xe. Let us introduce a new variable ξ = x−xe

as a perturbation, with which ξ̇ = ẋ. The ith element of the function can be approximated as

ξ̇i ≈ fi(xe) +

n∑

j=1

∂fi
∂xj

∣∣∣∣
xe

ξj + H.O.T., (3.2)

where abbreviation H.O.T refers to the higher order terms of the Taylor series. It is generalized for
for the whole set of ξ. Leave the H.O.T and suppose that xe is an equilibrium thus f(xe) = 0 and
using xe = 0 assumption (3.2) simplifies as

ξ̇ = A ξ, whereAij =
∂fi
∂xj

∣∣∣∣
xe
. (3.3)

The ξ̇ = A ξ is called the linearization of ẋ = f(x) at x = xe. If A has n eigenvalues, each of which
has strictly negative real part, then x = xe is asymptotically stable [56].

For the analysis of the controlled system the equation of motion have to be linearized around
the equilibrium position or the desired trajectory. The linearization of the dynamical system is
straightforward, when it is modelled with an ODE as it is discussed in [59]. However, as it is
presented before, the governing equation of a multibody system is typically a differential algebraic
equation. In this case the eigenvalue analysis is not as straightforward as in case of an ODE. The
eigenvalue analysis methods for constrained equations can be mainly divided into two categories.

One possible approach is to transform the original equation of motion into the space of inde-
pendent coordinates before the eigenvalue analysis [19], [60]. This transformation can be done by the
introduction of a new set of independent coordinates as it is presented in [36], or with the partitioning
of the coordinates [39]. These reduction based techniques are efficient when the degrees of freedom
of the system and the number of constraints are relatively small. In contrast, the reduction into
independent coordinates in case of a high dimensional problem is numerically expensive and depends
on the configuration.

The other possibility is the direct eigenvalue analysis [61, 62]. A few studies are available
where the direct eigenvalue analysis of the constrained dynamic equations are used to analyse the
stability and dynamical characteristics, such as vibration frequencies of complex and large deformable
mechanical systems [61–63]. In these works, the Lagrange multipliers associated with the constraints
are considered as differential variables in the eigenvalue problem. Because of this, spurious eigenvalues
appear, beside the physically meaningful ones, and they do not characterize the dynamics of the
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investigated system. Reference [62] describes how these spurious eigenvalues are resulted from the
algebraic part of the problem and how they can be recognized and isolated using the calculated
eigenvectors of the system. These direct linearization techniques use the DAE equation in the original
index-3 form, which means that the constraints are considered in the original algebraic form.

3.1 Eigenvalue separation for continuous system

In the followings, a different approach will be presented. In order to eliminate the Lagrange multipliers
λ the equation of motion (1.5) have to be written in index-1 form as (1.10). As a first step, Eq. (1.10)
is reorganized as: [

q̈

λ

]
=

[
f1(q, q̇, t)

f2(q, q̇, t)

]
. (3.4)

In the stability investigation it is enough to deal with function f1, which describes the dynamics of
the system. The state space variables are collected in x = [q, q̇]ᵀ. The first order form of the first
set of equations in (3.4) is linearized around the investigated configuration xe = [qe, q̇e]

ᵀ. We apply
again the small perturbation: ξ = x− xe similarly as in Eq. (3.2). The following form is obtained

[
q̇

q̈

]
=

[
q̇e

f1(xe)

]
+

[
0 I

∂f 1(x,t)
∂q

∂f 1(x,t)

∂q̇

]∣∣∣∣∣
xe

[
q− qe
q̇− q̇e

]
. (3.5)

Since f1(xe) = 0 because xe is an equilibrium, Eq. (3.5) can be rewritten in the general form:

ξ̇ = A(xe) ξ, where A(xe) =

[
0 I

∂f 1(x,t)
∂q

∂f 1(x,t)

∂q̇

]∣∣∣∣∣
xe

. (3.6)

A is a finite matrix and Eq. (3.6) is asymptotically stable if the real part of all the eigenvalues µi of
matrix A are negative [59].

In case of the constrained system (1.5)-(1.3), the dimension of x is 2n and because of the m
number of constraints the system has only n −m degrees of freedom. Hence, only g = n −m pairs
of eigenvalues characterize the dynamics of the system. Eq. (3.4) contains m constraint relations at
the acceleration level. In order to see the additional effect of acceleration level constraints 1.9 let us
write Eq. (1.9) in first order form as:

[
ϕ̇

ϕ̈

]
=

[
0 I

0 0

][
ϕ

ϕ̇

]
. (3.7)

The leading matrix of (3.7) have 2m zero eigenvalues. These eigenvalues also appear in the direct
investigation and these have to be isolated from the eigenvalues of matrix A in Eq. (3.6). It seems
straightforward to collect 2m zero eigenvalues from the eigenvalue vector µ = [µ1 · · ·µ2n]T. But in
such systems, when there are eigenvalues close to zero, the numerical selection of the non-physical
eigenvalues has limitations.

I propose that in order to detect physically meaningless eigenvalues a detection function is
introduced as:

ϕ̈+ f s = 0, where f s = a1 ϕ̇+ a2ϕ = 0. (3.8)
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Figure 3.2. Constrained system example

This function introduces a fictitious dynamic behaviour associated with the constraints. With the
introduced dynamical behaviour the physically meaningless eigenvalues can be detected using sen-
sitivity analysis [58] with respect to parameters a1 and a2. The form of the expression (3.8) has
similiar structure as the Baumgarte stabilization technique, but here the introduced terms are used
only for detecting of the spurious eigenvalues and not for the stabilization of the constraints. In the
proposed method, the constraints in the form of (3.8) are used in (3.4) instead of (1.9). For the local
sensitivity analysis the partial derivatives of the eigenvalues µ respect to a1 and a2 are calculated.
These partial derivatives are given with the following Jacobian

T =

[
∂µ1
∂a1

· · · ∂µ2n
∂a1

∂µ1
∂a2

· · · ∂µ2n
∂a2

]
. (3.9)

In practice this matrix can be constructed with numerical differentiation. The 2m number of largest
elements in the first row of Jacobian T are associated with the spurious eigenvalues. This is also true
for the second row, which provides redundant information regarding the eigenvalues. The related
2m number of eigenvalues have to be discarded from µ.

The above explained method is possible because of the Rouche’s theorem [64], which states that
the eigenvalues µi change continuously, if the system parameters are also varied continuously.

3.1.1 Example for a continuous time system

In order to demonstrate the proposed technique, the simplest system with continuous time-behaviour,
which can be described with differential algebraic equations, is analyzed. The benchmark example
(see Fig. 3.2) is built up by two blocks. The blocks are connected with a rigid rod, the system has
one DoF. This system is described by dependent coordinates q = [x1, x2]

T. The only constraint is
that the distance between the blocks is constant ϕ = x1 − x2 − d0 = 0. Then Eq. (1.5) reads

[
m1 0

0 m2

][
ẍ1

ẍ2

]
+

[
1

−1

]
λ =

[
−k x1 − b ẋ1

0

]
. (3.10)

Using the dependent coordinates based description, the eigenvalues can be calculated as it is
proposed in (Sec. 3.1). For the numerical study the physical parameters were the following m1 =

m2 = 1 kg, b = 1 N/m k = 1 Ns/m. In the detecting function f s the parameters are simply chosen as
a1 = 1 and a2 = 1. Fig. 3.3 shows the elements of Jacobian T. Both first and second rows show that
the 3rd and 4th eigenvalues have to be discarded. In order to show that the introduced detecting
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Figure 3.3. Jacobian T of the sensitivity function in case of the two-mass example

Table 3.1. Calculated eigenvalues of the two-mass example in continuous case

DAE based solution Exact solution
eigenvalue of the physical system −0.2500 + 0.6614i −0.2500 + 0.6614i
eigenvalue of the physical system −0.2500− 0.6614i −0.2500− 0.6614i
eigenvalues due to constrained dynamics −8.8730 -
eigenvalues due to constrained dynamics −1.1270 -

function f s does not change the values of the real eigenvalues, the eigenvalues are calculated with
different a1 parameters. Fig. 3.4 shows that only the non-physical eigenvalues change.

To verify the result let us calculate the eigenvalues using independent coordinates based descrip-
tion. In this case position of the first block x1 is chosen as the generalized coordinate. The equation
of motion reads

(m1 +m2)ẍ1 + kẋ1 + bx1 = 0, (3.11)

where m1 and m2 are the masses of the blocks respectively, b is the damping coefficient and k is the
stiffness coefficients. In this case the eigenvalues can be expressed in analytical form

λ1,2 =
−b±

√
b2 − 4k(m1 +m2)

2(m1 +m2)
. (3.12)

The results of the proposed method and analytical calculations are summarized in Table 3.1. The
results show that using the dependent coordinates based description the real eigenvalues of the system
could be calculated, the results are the same as with analytical calculations (3.12) and the error is
within the limits of the round-off error.
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Figure 3.4. Changing of the non-physical eigenvalues in case of the two-mass example

3.2 Eigenvalue separation for sampled systems

The stability investigation technique introduced in Sec. 3.1 can be extended to sampled systems.
Considering the discrete behavior of the digitally controlled system, a piecewise solution of the
linearized equation of motion have to be constructed for eigenvalue analysis.

It is assumed that during the operation of a robotic system, the (i − 1)th measured values of
q and q̇ are used in the control law. Then the calculated control forces u are available at the ith

time instant and they are held by a zero-order-hold (ZOH) until the end of the (i + 1)th sampling
instant. Thus a ZOH plus a unit delay is supposed. In case of a real device, this control input u is
commanded to the physical system. In the case of stability investigation or numerical simulation, u

is substituted into Eq. (2.13). As a result, we obtain the dynamic model of the closed-loop system.
The linearized equation of motion (3.5) can be extended to the above explained closed-loop,

sampled system as
ξ̇(t) = A|xeξ(t) + B|xeξ(ti−1), t ∈ [ti, ti+1]. (3.13)

Again the state vector is x = [q, q̇]T and ξ = x−xe. The solution of Eq. (3.13) for the state variables
at the end of the ith sampling interval is calculated as

x(ti+1) = Adx(ti) + Bdx(ti−1), (3.14)

where Ad and Bd can be calculated utilizing the following property [59]

eWTs =

[
Ad Bd

0 I

]
, (3.15)
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Figure 3.5. Constrained system example

where Ts is the sampling time of the digital controller, and matrix W is

W =

[
A B

0 0

]
. (3.16)

Then by introducing the new discrete state variable zj = [xj , xj−1]
T ∈ R4n, the stability of the

digitally controlled system can be investigated by calculating the eigenvalues of the discrete mapping
constructed from the piecewise solution of the equation of motion [59]

zj+1 = C zj with C =

[
Ad Bd

I 0

]
. (3.17)

The convergence of the multi-dimensional geometric series described in Eq. (3.17) is equivalent to
the asymptotic stability of the desired motion of the controlled system [65]. Thus, to ensure stability,
the eigenvalues of C have to be located within a unit circle of the complex plane [59].

When the system is modelled with non-minimum set of descriptor coordinates, as in Eq. (1.10),
the mathematical description results in non-physical eigenvalues, similarly to the continuous case.
Here, again, m number of constraints are present. Since the mapping matrix have 4n number of
eigenvalues, in this case 4m eigenvalues have to be separated.

If we apply stability analysis technique to the first order form of the constraint equations (3.7),
2m number of zeros and 2m number of ones are obtained. These 2m number of zero eigenvalues are
not separated, because they are necessarily in a unit circle and hence do not influence the stability.

Using the sensitivity function (3.8) 2m number of eigenvalues -the ones- of the mapping matrix
C depends on the value of a1 and a2. The procedure of their elimination is the same as in case of
continuous case. The only difference is that the size of Jacobian T ∈ R2×4n in Eq. (3.9) is the double.

3.2.1 Example for sampled systems

Similarly to the continuous case, a demonstrative example will be used to introduce the proposed
method. The benchmark problem shown in 3.2 is modified for the demonstration. Hence the spring
and the damper is replaced with a simple digital Proportional Derivative (PD) controller as it is
shown in Fig. 3.5. Governing equation of motion using the dependent coordinates is modified as

[
m1 0

0 m2

][
ẍ1

ẍ2

]
+

[
1

−1

]
λ =

[
fc

0

]
. (3.18)
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In the benchmark example it is assumed that the control force fc is calculated using a zero order
holder as

fc = −P x1(ti−1)−D ẋ1(ti−1), t ∈ [ti, ti+1). (3.19)

The masses are m1 = m2 = 1 [kg], while the control parameters for the test calculation were selected
as: P = 1N/m,D=1Ns/m. Using the dependent coordinates based description, the eigenvalues can
be calculated as it is proposed above. Fig. 3.6 shows the elements of Jacobian T. The first and second
rows also show that here the 5rd and 6th eigenvalues have to be eliminated. The absolute value of the
complex eigenvalues are presented in Table 3.2. In order to show that the proposed method does not
change the real eigenvalues of the system the eigenvalues are calculated with different a1 parameters.
The Fig. 3.7 shows that only the two non-physical eigenvalues are changed. These eigenvalues are
shown in red colour.

As a comparison, let us formulate the ODE equation of the controlled system using the minimum
set of descriptor coordinates (x1) as

(m1 +m2) ẍ1(t) = −P x1(ti−1)−D ẋ1(ti−1), t ∈ [ti, ti+1). (3.20)

The eigenvalues of this ODE based discrete-time system can be computed as it is described by Eqs.
(3.13)-(3.16). These eigenvalues are summarized in the right column of Table 3.2. With proposed
method using the dependent coordinates based (DAE) description the same results could be obtained
as with independent coordinates (ODE) based description.
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Figure 3.6. Jacobian T of the sensitivity function in case of the two-mass example in discrete case
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Figure 3.7. Changing of the calculated eigenvalues in discrete case

Table 3.2. Calculated eigenvalues of the two-mass example in sampled case

DAE based solution ODE based solution
eigenvalue of the physical system 0.9975 0.9975
eigenvalue of the physical system 0.9975 0.9975
eigenvalue of the physical system 0.0050 0.0050
eigenvalue of the physical system 0 0
eigenvalue due to the constrained dynamics −8.8730 -
eigenvalue due to the constrained dynamics −1.1270 -
eigenvalue due to the constrained dynamics 0 -
eigenvalue due to the constrained dynamics 0 -
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3.3 New results

When holonomic multibody systems are modeled with dependent coordinates their dynamics is de-
scribed by a system of index-3 differential algebraic equations (DAE). The direct eigenvalue analysis
of these systems results in spurious, non-physical eigenvalues due to the applied geometric constraints.
Therefore, for the stability analysis the modeled system is often re-parametrized in terms of minimum
set of generalized coordinates. This requires an additional step and the non-unique selection of the
new generalized coordinates.

Thesis 1.
The method proposed in this thesis makes the eigenvalue analysis possible without

the re-parametrization of the dynamic equations as follows:

– Index reduction is carried out to obtain an index-1 DAE.

– The acceleration level constraint equations are modified by a sensitivity function.

– The first order form system is linearized around the investigated equilibrium.

– The eigenvalues are calculated.

– Applying a sensitivity analysis as a final step the non-physical eigenvalues are
discarded.

In case of a sampled data system prior to the eigenvalue investigation, the solu-
tion for one sampling period is generated and the discrete state transition mapping is
constructed. Then the spurious eigenvalues can be discarded with the sensitivity anal-
ysis. It is a practical, convenient selection, if the sensitivity parameters are equal to or
smaller than the Baumgarte-parameters which fit to the investigated system.

Related journal publication:
L. Bencsik, L.L. Kovács, and A. Zelei, “Stabilization of internal dynamics of underactuated

systems by periodic servo-constraints,” International Journal of Structural Stability and Dynamics,
2017, 14 pages, paper id: 1740004.

Other related publication:
[67]



Chapter 4

Application of the method of blended
servo-constraints

The generalization of the computed torque controller for underactuated systems (2.21) has a general
form, however the direct application of the introduced techniques has difficulties. In case of an
underactuated system, the problem is caused by the unstable internal dynamics [1]. The definition
of the internal dynamics is given in Sec. 2.1.3. In a given system the internal dynamics depends on
the chosen output only. Accordingly, in case of unstable internal dynamics, stable operation requires
the modification of the original output (servo-constraint). In the related literature [1], [21], [68], [69]
this intuitive modification is formulated for robots with open kinematic chain only. There the linear
combination of the active and passive joints are considered as an output which have to be controlled.

Instead, here I propose a more general formalism along the lines of Alpha-blending method [70],
which is used in computer graphics. In the followings, this method is mentioned as method of blended
servo-constraints . The new servo-constraint is the combination of the original servo-constraint γ̂
and the newly introduced stabilizing term γs. The reformulated servo-constraint vector is written as

γ = κ γ̂ + (1− κ)γs, (4.1)

where κ is the blending factor. In order to choose a servo-constraint set, which makes the stable
operation possible, first the stability analysis of the internal dynamics is discussed. Thereafter, a
benchmark problem and a real robotic system are investigated in detail.

4.1 Analysis of the internal dynamics

The behaviour of the internal dynamics is a key question in underactuated systems. Below two
methods will be presented for the characterization of the internal dynamics. The first method requires
the introducing of a new parametrization. In contrast, the second newly proposed method is based
on a DAE formalism which could be more beneficial in complex systems.

Intuitive separation of coordinates

The systematic separation of controlled (also referred as driven in [1]) and internal dynamics makes
possible the prudent analysis of the internal dynamics as it is also published in [68]. A new set of
coordinates has to be introduced for this separation. Outputs γ ∈ Rl (servo-constraints) and the

31
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intuitively chosen internal states η ∈ Rn−l are the new set of coordinates q̃ = [γ,η]T ∈ Rn. From
the servo-constraint at the acceleration level Eq. (2.17) and from the equation of motion (2.13) the
controlled dynamics can be expressed as

γ̈ = Γ(M−1(c−Q + Hu)) + Γ̇q̇− ġ . (4.2)

From Eq. (4.2) the nominal control, which theoretically produce the required input, can be calculated

ū = (Γ(M−1H))−1(Γ(M−1(Q− c)− γ̈ − Γ̇q̇ + ġ ) . (4.3)

From the original coordinates the descriptor coordinates of the internal dynamics can be selected
as η = Suq, where Su is a selector matrix. Using the original equation of motion (2.13), and the
nominal control torque Eq. (4.3) the internal dynamics can be expressed as

η̈ = Su(M−1(c−Q + Hū) = α(η, η̇,γ, γ̇, γ̈). (4.4)

This equation shows that the internal dynamics is nonlinear and it depends on the desired output h(t)

(see Eq. 2.16) , which explicitly depends on time. Then for the analysis of the internal dynamics the
concept of zero dynamics [47] [71] is used. For this, a constant system output ḣ(t) ≡ 0 is considered
which reduces the original problem to the investigation of a time-invariant nonlinear system. The
local stability of the zero dynamics can be analyzed by considering the corresponding linearized
system.

In case of a complex system, it is hard to intuitively select the coordinates η, which represent
the internal dynamics. This selection is not unique similarly to the selection of minimum set of
descriptor coordinates in the dynamical modelling. In the related literature, there is no advice for
the selection of the coordinates of the internal dynamics.

Proposed analysis of the internal dynamics

In the followings, a new concept is proposed for the analysis of the stability properties of the in-
ternal dynamics. The proposed method eliminates the need of the a priori selection of the different
coordinates for the parametrization of the controlled and uncontrolled/internal dynamics.

It was shown in Sec. 3 that the stability investigation of a system can be carried out by using the
original non-minimum set of descriptor coordinates. In that case, the equation of motion is subjected
to geometric constraints and the motion is possible in the admissible directions only and the resulted
eigenvalues are related with this admissible motion.

Here, the end-effector of the robot has to follow a desired trajectory. This trajectory is described
by the servo-constraints. The motion, which is not restricted by the servo-constraints, belongs
to the internal dynamics. We assume that the servo-constraints are perfectly satisfied and it can
be substituted with geometric-constraints as Fig. 4.1 shows. With this assumption, the internal
dynamics with identical to the admissible motion. Therefore the DAE based eigenvalue analysis can
be used (see Sec. 3). Here the admissible dynamics is identical with the zero dynamics when the
desired position is constant ḣ(t) ≡ 0. In this case, the problem can be defined with the combination
of the equation of the controlled motion (2.20) and the sensitivity function (3.8) as

[
M −H

Γ 0

][
q̈

u

]
=

[
−c + Q

−Γ̇q̇ + ġ − a2γ̇ − a1γ

]
. (4.5)
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Figure 4.1. Underactuated system with different constraints

Here, a1 and a2 are the parameters of the sensitivity function which makes possible the elimination of
the constrained eigenvalues as it is introduced in Sec. 3. From Eq. (4.5) the admissible accelerations
can be expressed. Similarly to Eq. (3.5), it can be linearized around the investigated configuration
x0 = [q0, q̇0]

T with the constant desired output h. Then the eigenvalues of the linearized system
are computed as it is detailed in Sec. 3.1. Here the DoF is g and the dimension of the output is l
and because of the first order form, 2 l eigenvalues have to be discarded and the remaining 2(g − l)
eigenvalues characterize the internal dynamics.

4.2 Representative benchmark and real world problems

In the following studies this technique will be applied in case of a sliding pendulum system and in
order to show the general applicability of the method it will be also applied in case of a more complex
robotic device.

4.2.1 Sliding pendulum

In the followings, a planar sliding pendulum (see Fig. 4.2) is analyzed. This benchmark problem
can be used as a model of an open chain manipulator with passive last joint [21], [49]. This sliding
pendulum could be a model of an overhead crane also.

The system is built up by a slider (linear drive) with massm1 and the carried object is symbolized
with a homogeneous rod with mass m2 and length l. The distance between the centre of mass CM
and the joint A is rCM. The frictions in the joint of the rod are modelled by a viscous damper b.
The horizontal position of the slider and the inclination of the rod are the generalized coordinates
q = [x1, ϑ]T respectively. The equation of motion can be obtained as

[
m1 +m2 rCMm2 cosϑ

rCMm2 cosϑ JCM + 0.25m2 l
2

][
ẍ1

ϑ̈

]
+

[
−ml sinϑϑ̇2

rCM gml sinϑ+ b ϑ̇

]
=

[
1

0

]
F. (4.6)
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Figure 4.2. Sliding pendulum system

The control task is the horizontal positioning of the tip (point TCP). It can be formalised using the
servo-constraints as

γ = xTCP(q)− xdTCP = x1 + l sinϑ− xdTCP. (4.7)

Using Eqs. (4.6), (4.7), the control force can be calculated by means of Eq. (2.20). In this control
problem the sum of the elements of the relative degree vector is r̃ = 2. Thus internal dynamics
remains in the case of this 2 DoF example. If we apply the control technique given by Eq. (2.20), the
system will lose its stability regardless of the applied control gains. This is similar to the instability
of the motion of the passive link in references [1] [72] [73] [49], and it is due to the unstable internal
dynamics. It can be proven in several ways. The simplest way is if we express the angular acceleration
from Eq. (4.6), which does not depend on the input force

ϑ̈ =
rCMm2 cosϑ ẍ1 + rCM gml sinϑ+ b ϑ̇

JCM + 0.25m2 l2
. (4.8)

The horizontal acceleration of the controlled point can be obtained by time differentiating Eq. (4.7)
as

ẍTCP = ẍ1 − l cosϑϑ̈. (4.9)

The angular acceleration Eq. (4.8) can be substituted into Eq. (4.9). Since a homogeneous rod is
considered, the inertia is JCM = 1/12ml2 and the centre of gravity is placed at the geometrical
centre (rCM = l/2). This expression is linearized around the hanging down position. Omitting the
gravity and damping, the horizontal acceleration can be expressed as

ẍTCP = ẍ1(1− l
3

2 l
) = −1

2
ẍ1. (4.10)

From Eq. (4.10) we can conclude that positive acceleration requires negative acceleration at the slider.
It is easy to see that one can not achieve this for longer (finite) time. This contradictory condition
indicates unstable internal dynamics.
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Reference [21] and [73] propose to move the controlled point closer to the passive joint. Let the
distance of the controlled point from the joint to be r̄. In that case Eq. 4.10 modifies to

ẍTCP = ẍ1(1− r̄
3

2 l
). (4.11)

In this case, the controller will be stable if r̄ < 2/3. This point is the centre of percussion. With
this modification the internal dynamics and therefore the applied computed torque controller will be
stable. This modification can be formalized in more general form using the above introduced blended
servo-constraint method. According to (4.1) let us choose the position of the slider as the stabilizing
term γs = x1 − xdTCP.

Using the blended method, the reformulated servo-constraint can be written as the combination
of the original servo-constraint and the stabilizing term

γ = κ (x1 + l sinϑ− xdTCP) + (1− κ) (x1 − xdTCP), Γ = [1, κ l cosϑ]T. (4.12)

In case of this example, it can be proven that around the hanging down position κ have to be smaller
than 2/3 (similar to Eq. (4.11)) in order achieve that the controlled point is located below the centre
of percussion.

In case of a simple example this modification can be made using simple physical intuitions.
In case of a more complex system, a detailed study is required for the modification of the servo-
constraints. The stability of the internal dynamics is analyzed in the subsequent section.

4.2.1.1 The stability of the internal dynamics

For the following numerical studies, the mechanical parameters of the sliding pendulum are originated
from a mobile crane laboratory device which is shown in Fig. 4.3. The mechanical model of the mobile
crane is the sliding pendulum system (Fig. 4.2).

That mobile crane is composed by a DC motor driven mobile cart and a passive (not directly
driven) rod. The task of the robot is same as the task of the sliding pendulum. The position of
the cart is measured via the encoder of the motor, and there is an encoder in the passive joint
for measuring the nutation angle. The mechanical parameters used in Eq. 4.6 are summarized in
Table 4.1. The task, which considers the original control objective and the original internal dynamics,
is formalised in Eq. (4.1).

The eigenvalues of the linearized internal dynamics are investigated as the function of the
coupling term κ. In order to formulate the controlled dynamics as it appears in Eq. (2.21), the
equation of motion Eq. (4.6) and the servo-constraints Eq. 4.12 are used. The eigenvalues of the
controlled (constrained) system can be calculated around the hanging down position qe = [xe, ϑe]

T =

[0, 0]T with xdTCP = 0. Fig. 4.4a shows the eigenvalues λ1, λ2 of the internal dynamics and the zero
eigenvalues λd1, λd2 of the driven dynamics. These zero eigenvalues can be discarded using the
detailed sensitivity analysis. In Eq. (4.5) the sensitivity parameters were a1 = a2 = 1. Fig. 4.4b
shows the eigenvalues of the internal dynamics after the separation. For the better visibility Fig. 4.4c
shows eigenvalues under the stability border κ∗. It can be concluded that the eigenvalues of the real
part are negative when κ < 2/3. Let κ∗ = 2/3 denote the corresponding stability boundary. This
boundary is obtained from the physical intuitions based calculations in Eqs. (4.8)-(4.11) also. This
result is the same with the results of [68], but here the separation of the internal and controlled
dynamics was not necessary.
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Figure 4.3. Mobile crane experimental device

Above κ∗ the internal dynamics is not stable and the computed torque control method given in
Eq. (2.21) is not feasible.

Table 4.1. Mechanical parameters of the mobile crane experimental device

mass of the cart (m1) 6.35 kg
mass of the pole (m2) 0.1 kg
length of the pole (l) 0.9m
inertia of the pole (JCM) 0.00675 kgm2

viscous friction (b) 0.002Ns/m

4.2.1.2 The stability behaviour of the discrete system

While the stability of the internal dynamics is not sufficient for the stability of the whole digitally
controlled system, in the followings, the stability of the digitally sampled system will be investigated.
The discrete mapping of the digitally controlled system can be constructed as it is detailed from
Eq. (3.13) to Eq. (3.17). Similarly to the investigation of the internal dynamics, the linearization
was carried out around the hanging down position. In case of the experiment, the sampling time was
Ts = 0.03 s because of the controller electronics.

The stability calculations were carried out in the space of the proportional and derivative control
parameters (see Eq. (2.21)) and the coupling term κ. In order to keep the number of free control
parameters low the control gain matrices are selected as KP = KP I and KD = KD I, and in the
stability investigation carried out in the space of the scalar KP, KD values throughout the whole
thesis.

The stability charts of Fig. 4.5 show the domain of stable parameters.
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(c) The stable eigenvalues of the internal dynam-
ics after the separation

Figure 4.4. Eigenvalues of the internal dynamics

In Fig. 4.5a the change of the stability borders are depicted in case of different κ values. In
Fig. 4.5b the stability charts are illustrated at characteristic κ values. In that figure, the same shades
of gray belong to the same ranges of the spectral radii ρ [59]. Again, the system is stable when
the spectral radii ρ of the discrete mapping is less than 1. Based on the stability charts it can be
concluded that the fastest decay ρmin = 0.947 can be achieved when the coupling term is κ = 0.6

and the control gains are KP = 142.4[1/s2], KD = 24.6[1/s].
The area of the stable domains are the largest and therefore the control parameters could be

selected from the widest range when κ = 0.5 . The results show that the stability is not guaranteed at
κ < 2/3. Considering the sampled data control, the blending parameter κ should be further reduced.
The limit of stability is approximately at κ∗ ≈ 0.62.

4.2.1.3 Simulations and experiments

The proposed control algorithm has been tested with numerical simulations and it has been also
applied on the introduced laboratory device. The lower end of the rod is commanded to follow a
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Figure 4.5. Stability charts of the Sliding pendulum system
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horizontal trajectory. This is defined by the C8 continuous polynomial which is widely used in the
benchmark problems of underactuated multibody systems [21], [74]

xdTCP(t) = x0+

(
126

(
t

τ

)5

− 420

(
t

τ

)6

+ 540

(
t

τ

)7

− 315

(
t

τ

)8

+ 70

(
t

τ

)9
)

(xEND−x0). (4.13)

Parameter τ is the time duration of the desired motion between the horizontal position x0 and xEND.
In the following study these were set as τ = 10 s, x0 = 0m and xEND = 0.5m

The mobile crane experimental device was built for the verification of the simulations of the
sliding pendulum model in the frame of a student research project [75]. The mobile platform is driven
by a brushed DC gearheadmotor [76]. The gear ratio of the drive is ig = 63.3. The motor drives the
shaft of the drive wheel with a toothed belt without speed modification.

The equation of motion of the experimental device is given by Eq. (4.6) with the parameters of
Table 4.1. Using Eq. (2.20), the required force and the desired accelerations (q̈d) can be calculated.
In case of the laboratory device, the source voltage (U) of the motor is commanded. The voltage is
adjusted with a PWM (Pulse-Width-Modulation)[77] controller. The PWM frequency was 18kHz, it
is outside the audible frequency range and allows for quiet motor operation. The voltage is determined
in a such way that the motor speed converges to a desired value. Thus at ith sampling, the control
voltage is calculated as

Ui = P (φ̇di − φ̇i−1) + I , (φdi − φi−1), (4.14)

where P and I are the proportional and integral gains respectively, and φ is the angular position
of the motor. The control gains of the speed controller is tuned using the Ziegler-Nichols method
[78] and these parameters are P = 2.3[V/s], I = 4.2[V]. The angular velocity φ̇ is determined with
numerical differentiation.

The desired angular velocity and position of the mobile platform can be determined from the
desired acceleration (ẍd1) as

φ̇di =

∫
ẍ1
rw

ig φdi =

∫ ∫
ẍ1
rw

ig, (4.15)

where rw = 0.03m is the radius of the drive wheel. The integrations are carried out with numerical
schemes using the rectangular rule. As a summary Fig. 4.6 shows the whole control loop. The outer
loop is a computed torque controller as in Fig. 2.5. The inner loop is a speed controller which results
the control voltage, which is tuned by a PWM controller.

The control gains of the compute torque controller are selected based on the stability investi-
gations (see Fig. 4.5). Thus the selected proportional gain was KP = 142 [1/s2] the derivative gain
was KD = 24 [1/s] and the coupling term was κ = 0.6 providing the fastest decay at ρmin = 0.96.
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Figure 4.7. Simulation and measurement results in case of the sliding pendulum

Fig. 4.7 shows the simulation and experimental results compared to the desired output. The lower
end of the rod follows the desired trajectory and it reaches the desired end position in a stable way
in both cases. However, the applied blended servo-constraints cause an overshoot. In reference [68]
a similiar phenomenon can be noticed in case of the control of a flexible arm.

To show the different mechanisms how the system can lose its stability two additional ex-
periments were conducted. Beside the stable operation for the qualitative review of the stability
investigations and to see the different stability losing mechanisms two unstable measurement sce-
nario were analyzed. In the first experiment the control gains were selected from the unstable regions
but providing that the internal dynamics is stable (κ = 0.6,KP = 100 [1/s2],KD = 10 [1/s]). In the
second experiment the coupling ratio was changed to κ = 0.67. In the first case (see Fig. 4.8a) the
output oscillates around the desired value with a growing amplitude. This creates similar oscillations
in the coordinate ϑ which represents the internal dynamics. In the experiments shown in Fig. 4.8b
the system loses its stability in a catastrophic way. It is because the eigenvalues of the internal
dynamics are real and have opposite signs (see Fig. 4.4) when κ > 2/3, which result in a saddle-node
type bifurcation [57].

The measurement results are qualitatively the same as the numerical simulations. The results
of the measurement and simulations show that the controlled system can be stable when the internal
dynamics is stable. The stability of the internal dynamics can be achieved with the application of the
blended constraints. The results also verify that if the control parameters are chosen from the stable
regions the system works in stable way. The cost of the stability is that the applied blended method
cause overshoot in the trajectory following which appears as positioning error. The maximum of the
positioning error is 0.0351[m]. The positioning error is the highest when the highest acceleration is
required and it tends to zero at the end of the motion. In the following chapter an other technique
will be proposed which tries to minimize this positioning error.
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Figure 4.8. Measurement results with unstable behaviour in case of the sliding pendulum

4.2.2 Planar model of the Acroboter service robot

This section provides a complex planar example for illustrating the application of the proposed stabil-
ity analysis method. The planar model of the Acroboter service robot is considered [12] (see Fig. 4.9a).
This robot is a suspended, pendulum-like underactuated manipulator. Its mechanical structure can
be divided into two main units: the climber unit (CU) and the the swinging unit (SU). The CU
moves along a suspended structure/ceiling and carries the SU which is supported and hoisted by the
main cable and three secondary orienting cables. The main cable and secondary cables are connected
via the cable connector (CC). The length of the cables are adjusted by servo motors, and the fine
positioning of the SU is assisted by ducted fan actuators.

The analyzed planar model is shown in Fig. 4.9b. In this model the linear drive of the CU
guarantees that P1 follows the desired horizontal position xdSU of the SU. The position of point P1 is
described by an ideal constraint, the controlled dynamics of the CU is neglected. The forces exerted
by the main cable, the two secondary cables and the ducted fan (located by ρT) are the independent
control inputs that drive the swinging unit. Since the planar model has five DoFs and the number
of independent actuators is only four, the system is underactuated.

The kinematics of this model is parametrized by natural, i.e. fully Cartesian coordinates [14].
These are collected in the generalized coordinate array q = [x2 y2 x3 y3 x4 y4]

ᵀ, where the last four
elements belong to the planar rigid body that represents the SU. With this, the equation of motion
of the Acroboter system can be written in the basic DAE form of Eq. (1.10). According to [14] the
mass matrix of the planar Acroboter model can be assembled as a constant block diagonal matrix
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Figure 4.9. The prototype of Acroboter platform

Table 4.2. Mechanical parameters of the planar Acroboter model

mCC 0.1 kg
mSU 4 kg
lSU 0.5m
JζSU 0.8kgm2

ξCM 0.25 m
ηSU 0 m
ξT 0.25 m
ηT 0.05 m

M = diag(MCC MSU ) with the blocks MCC = mCC I, where I is the 2 by 2 identity matrix, and

MSU =




mSU (lSU−2ξCM )
lSU

+
JζSU
l2SU

0 mSU ξCM
lSU

− JζSU
l2SU

−mSUηCM
lSU

0 mSU (lSU−2ξCM )
lSU

+
JζSU
l2SU

mSUηCM
lSU

mSU ξCM
lSU

− JζSU
l2SU

mSU ξCM
lSU

− JζSU
l2SU

mSUηCM
lSU

JζSU
l2SU

0

−mSUηCM
lSU

mSU ξCM
lSU

− JζSU
l2SU

0
JζSU
l2SU



,

(4.16)
where lSU is the distance between the basic points P3 and P4, mCC and mSU are the masses of the
CC and SU, respectively, and JζSU is the mass moment of inertia of the SU with respect to point P3.
In addition, ξCM and ηCM give the location of the center of mass of the SU in the body fixed frame
{P3; ξ, η, ζ}. The corresponding physical parameters are summarized in Table. 4.2. The dependent
coordinates are subjected to the kinematic constraint

ϕ =
1

2

(
(x3 − x4)2 + (y3 − y4)2 − l2SU

)
, (4.17)
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where the selection of the quadratic constraint expression leads to a constraint Jacobian which is
linear in terms of the dependent coordinates

Φ = [0 0 x3 − x4 y3 − y4 x4 − x3 y4 − y3] . (4.18)

The system of applied forces consists of the non-inertial forces and the control forces. Here
the only non-inertial force is the gravity force. Using the natural coordinate representation it has a
simple constant form:

Qex =

[
0 −mCC g

mSUgηCM

lSU

mSUg(ξCM − lSU)

lSU
− mSUgηCM

lSU
− mSUgξCM

lSU

]T
. (4.19)

The control forces are collected in the vector u = [F1 F2 F3 FT ]T, where F1 is the tension in the
main cable, F2 and F3 are the cable forces applied through the orienting cables and FT is the thrust
force provided by the ducted fan actuator. The point of action of the thrust force is given by the
parameters ξT and ηT in the body fixed frame. With this, the applied control forces can be expressed
by the term Hu, where the control input matrix H has the form

H =




−x2
l1

x3−x2
l2

x4−x2
l3

0

−y2
l1

y3−y2
l2

y4−y2
l3

0

0 x2−x3
l2

0 (ξT−lSU )x3+(lSU−ξT )x4+ηT (y3−y4)
l2SU

0 y2−y3
l2

0 ηT x4−ηT x3−(lSU−ξT )(y3−y4)
l2SU

0 0 x2−x4
l3

ξT x4−ξT x3+ηT (y4−y3)
l2SU

0 0 x2−x4
l3

ηT x3−ηT x4−ξT y3+ξT y4
l2SU




(4.20)

and li, i = 1,2,3 denote the varying lengths of the main and the orienting cables. These lengths can
conveniently be expressed as functions of the dependent coordinates.

4.2.2.1 The stability of the internal dynamics

In the followings, the internal stability of the planar Acroboter model will be analyzed by applying
the method of blended constraints in the form of Eq. (4.1). In the presented test case the planar
Acroboter is commanded to follow a desired trajectory with horizontal orientation and the CC is
required to be above the SU at the relative height hdCC. The passive (lateral) motion of the CC is not
specified by the servo-constraints, hence this motion constitutes the internal dynamics. The original
and modified-stabilizing servo-constraints that describe the desired trajectory are given by

γ̂ =




yCC − y3+y4
2 − hdCC

x3+x4
2 − xdSU

y3+y4
2 − ydSU
y3 − y4




and γs =




yCC − y3+y4
2 − hdCC

x2 − xdSU
y3+y4

2 − ydSU
y3 − y4



. (4.21)

The introduced dynamical model uses independent coordinates, thus for the analysis of the internal
dynamics apart from eigenvalues which belong to the servo-constraints here the eigenvalues which
belong to geometrical constraints are also have to be discarded.

In general in the dynamical model n number of coordinates are used, among which m number
of geometric conditions appear and the dimension of the task is l. Because of the first order form
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Figure 4.10. Eigenvalues of the internal dynamics in case of the Acroboter system

2 (l + m) eigenvalues have to be discarded and the remaining 2(n − l −m) eigenvalues characterize
the internal dynamics if the relative degree is 2 for all input-output pairs.

Based on Eq. (2.21) the equation of the specified motion can be formulated as




M ΦT −H

Φ 0 0

Γ 0 0







q̈d

λ

u


 =




−c + Qex

−Φ̇q̇− π̇ − a2ϕ̇− a1ϕ
−Γ̇q̇ + ġ(t)− a2γ̇ − a1γ


 , (4.22)

where a1 a2 terms are the sensitivity analysis parameters used for separating the physical and artificial
eigenvalues due to the applied redundant parametrization.

From the Eq. (4.22) the admissible accelerations can be expressed. Similarly to Eq. (3.5) it can
be linearized around the investigated xe = [qe, q̇e]

T with the corresponding desired output h. Then
the eigenvalues of the linearized system have to be computed as it is detailed in Sec. 3.1.

In case of the planar model of the Acroboter the number of descriptor coordinates is n = 6, and
m = 1 geometric constraint is defined Eq. (4.17) and the dimension ot task is l = 4 (Eq. (4.21)), thus
2 eigenvalues belongs to the 1 dimensional internal dynamics.

Analysis of the internal stability was carried out in the hanging down (zero nutation) position.
The corresponding generalized coordinate values are qe = [0, −1, −0.25, −1.5, 0.25, −1.5]T m and
based on the servo-constraint Eq. (4.21) the desired output is h = [0.5m, 0m, −1.5m, 0m]T (4.21).
Similarly to the Cart-pole example the eigenvalues of the internal dynamics are calculated as the
function of the coupling term κ (see Eq. (4.1)).

The Fig. 4.10 shows the eigenvalues of the internal dynamics (λ1, λ2) and the eigenvalues of
the driven dynamics (λd1 . . . λd22), which could be discarded as it is proposed in Sec. 3. In the
dynamical model of the Acroboter planar model the damping is not considered, the eigenvalues have
only imaginary parts and in this case λ1, λ2 are complex conjugate pairs. It can be concluded that
the internal dynamics is marginally stable in the full range of κ. The vibration frequency of the
internal dynamics is the highest when κ = 1.
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Figure 4.11. Elements of the Jacobian matrix T in case of the Acroboter system

4.2.2.2 The stability behaviour of the discrete controlled system

For the case of sampled data control realization the stability investigation was also carried out in
the hanging down (zero nutation) position as it is proposed in Sec. 4.2.2.1. The sampling time was
Ts = 0.01 s. In reference [19] the stability investigation of this system is carried out with coordinate
transformation for the elimination of the constraints. That procedure required the selection of a
new set of independent coordinates, which is required for the a priory and intuitive selection of the
parametrizing minimum set of generalized coordinates. Furthermore, this coordinate transformation
was numerically relatively expensive. Here the stability charts were calculated by discarding the
non-physical eigenvalues using sensitivity analysis (see Sec. 3.2). During the elimination process
2 eigenvalues have to eliminated because one geometric constraint exists. It means that 2m = 2

eigenvalues are sensitive for the change of the parameters of the sensitivity function. As a confirmation
Fig. 4.11 shows the elements of the Jacobian T (3.9) at an arbitrarily selected point, which shows
that the sensitivity function has effect on these 2 eigenvalues only.

The stable regions are shown in the plane of the control parameters KP and KD at different
fixed values of κ in Fig. 4.12. In Fig. 4.12 the same shades of gray belong to the same ranges of
the spectral radii ρ = max(µi). With the DAE based eigenvalue analysis technique the averaged
computation time of the presented stability charts was tcomp = 1823 s, while the independent coor-
dinate based calculation [19] which uses trigonometrical functions for the transformations requires
tcomp = 2420 s. Both computations are made in MATLAB [27] environment on PC with an Intel
Core i7-5500 processor. During the computations only the MATLAB ran. The presented values are
the averaged value of ten computations in each case.

Based on the stability charts it can be concluded that the system could be stable with original
servo-constraints γ̂ but introducing of the stabilizing term γs has a positive effect on the stability.
The stable domains of control parameters are the largest when κ = 0.9 and has the minimum spectral
radii ρmin = 0.96. Fastest decay is characterized by ρmin = 0.94 and it can be achieved at κ = 0.8.

4.2.2.3 Trajectory tracking simulations

In order to validate the usability of the proposed controller and demonstrate the vibration attenuation
of the investigated controller, a numerical simulation was carried out. In the numerical simulation
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Figure 4.12. Stability charts of the Acroboter system

study the desired parameters xdSU and ydSU of Eq. 4.21 are prescribed such that the planar Acroboter
model has to follow a linear path with trapezoidal velocity profile. The starting point located at
xdSU(0) = 0m, ydSU(0) = −1.5m and the endpoint xdSU(5) = 0.5m, ydSU(5) = −1m have to be reached
after 5 s. Then the system has to stay in rest until the end of the simulation (tEND = 8 s). During
the motion the vertical distance between the cable connector and the swinging unit is required to be
constant with a prescribed value of: hdCC = 0.5m. During the evaluation of the task the maximal
velocity is vmax = 0.5m/s while the maximum allowed acceleration is amax = 0.25m/s2. In this
study three simulation studies will be introduced.

In the first simulation scenario the control input u was computed using the original servo-
constraints γ̂ and the stabilizing terms γs were not applied. This corresponds to the selection of
κ = 1. Then the fastest decay is provided by KP = 1500[1/s]2 and KD = 47[1/s] (see: Fig. 4.12).
The Fig. 4.13a shows the initial and final configuration of the system and the recorded path of
the representative points (P1, P2, P3). The violation of the servo-constraints tends to zero during
the simulations which are illustrated in Fig. 4.14a. The control force histories which also show the
stable operation, are depicted in Fig. 4.14b. In Fig. 4.14a γ2 and γ3 show the time history of the
positioning error of the swinging unit in horizontal and vertical direction respectively. The maximal
value is less than 2mm in both directions. The trapezoidal nature of the errors is caused by the
prescribed trapezoidal velocity profile. The maximal relative height error γ1 of the cable connector
is also less than 2mm. The inclination (relative vertical position of the edges) of the swinging unit
represented by γ4 is less than 0.1mm during the whole simulation.

In order to check the robustness of the controller in the second simulation scenario a perturbation
is modelled. The external accidental perturbation can disturb every controlled system but it is
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Figure 4.13. Simulational results

specially true for the Acroboter system, as the introduced robot is a service robot and it has to work
in an everyday environment closed cooperation with the humans. Considering a human collision as
a possible perturbation a horizontal perturbation force (5 N) was applied on the cable connector
between t = 1.0 s and t = 1.2 s.

First the control parameters remained the same as in the previous simulation. Fig. 4.13b shows
that the applied perturbation could excite the marginally stable internal dynamics and as a result
the cable connector developed unacceptable vibrations. The corresponding servo-constraint violations
and the applied control forces are shown in Fig. 4.15.

In the third simulation the same perturbation is applied, but the blended servo-constraints
are applied according to Eq. (4.1). Using the results of stability investigation the coupling term is
selected as κ = 0.8 and the control gains were KP = 200[1/s]2 and KD = 22[1/s]. The results clearly
show that despite the perturbation the system operates in a stable way (see Fig. 4.13c and Fig. 4.16)
In Fig. 4.13c γ2 shows the horizontal position error which maximal value is 10mm. In the vertical
direction the maximal servo-constraint violation γ3 is 3mm. The peak value of γ1 is less than 10mm.
Finally the peak value of inclination error γ1 is 0.5mm only. Comparing to the first simulation the
errors are significantly higher, but on the other hand with application of the blended servo-constraint
the control could work in a stable way despite the disturbance.

4.2.3 Concluding remarks

As it is shown in case of the control design of underactuated mechanical systems the internal dynamics
have to be taken in to account. Instead of partitioning the controlled (driven) and internal dynamics
a new approach was proposed which uses the stability investigation technique of DAE systems (see
Sec. 3.1). In order to ensure the stability of the internal dynamics a systematic technique called as
the method of blended servo-constraints is introduced. This method combines the controlled and the
originally non-controlled (internal) dynamics. This method is applied in case of a sliding pendulum
benchmark example. Beside the numerical stability analysis of the internal dynamics and whole
controlled system an experimental study was carried out. The experimentally observed dynamical



48 Application of the method of blended servo-constraints

0 2 4 6 8
−2

0

2
x 10

−3

γ
1
[m

]

t [s]

0 2 4 6 8
−2

0

2
x 10

−3

t [s]

γ
2
[m

]

0 2 4 6 8
−2

0

2
x 10

−3

t [s]

γ
3
[m

]

0 2 4 6 8
−2

0

2
x 10

−4

t [s]

γ
4
[m

]

(a) Servo-constraint violation

0 2 4 6 8
40

60

80

t [s]

F
1 [N

]

0 2 4 6 8
26

28

30

t [s]
F

2 [N
]

0 2 4 6 8
24

26

28

30

t [s]

F
3 [N

]

0 2 4 6 8
−5

0

5

t [s]

F
T
 [N

]

(b) Applied control forces

Figure 4.14. Simulational results at κ = 1

behaviour was consistent with the presented stability analysis. A good qualitative agreement could
be shown between the simulated and real motions. A similiar numerical study was carried out in
case of the Acroboter platform. Based on the numerical simulations it can be concluded that with
the application of the blended method the system can compensate the possible disturbance of the
environment effectively.
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Figure 4.15. Simulational results with perturbation at κ = 1
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Figure 4.16. Simulational results with perturbation at κ = 0.8
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4.3 New results

In underactuated systems unstable internal dynamics may exist, which makes the classical computed
torque trajectory tracking impossible. It is possible to overcome this problem with the following
technique which called as the method of blended servo-constraints. The application of the method
was demonstrated by simulation using the sliding pendulum benchmark example, and the method
was successfully applied for the trajectory control of the same system in an experiment. Furthermore,
the method was proved to be useful in the trajectory tracking control of the underactuated service
robot Acroboter.

Thesis 2.
The method of blended servo-constraints uses two different sets of servo-constraints:

one of these, γ̂, describes the desired trajectory, while the other one, γs, modifies the
original task such that their linear combination γ = κ γ̂+(1−κ)γs becomes feasible, where
κ is an adjustable parameter that can be used to find the balance between accuracy and
stability. The stabilizing servo-constraint set γs must contain the desired values of the
coordinates that corresponds to the original internal dynamics.

In case of the sliding pendulum the fastest decay of the oscillations induced by the
internal dynamics can be achieved if κ = 0.6, while in case the Acroboter robot the
fastest decay corresponds to the value κ = 0.8.

Related journal publication:
L.L. Kovács and L. Bencsik, “Stability case study of the acroboter underactuated service robot,”

Theoretical and Applied Mechanics Letters, vol. 2, no. 4, 2012, (Article 043004).
Other related publications:
[79], [80], [81], [82], [83], [84].





Chapter 5

The method of periodically varied
servo-constraints

While the geometric constraints are naturally satisfied in a physical system, the servo-constraints are
often violated, which violation itself constitutes the control error. Moreover, in certain situations,
the internal dynamics of the controlled system can be unstable which prevents the realization of the
control task. A possible way to handle this problem is to modify the original servo-constraints in
order to get a realizable task. Often the original task is modified by using a linear combination (see
Eq. (4.1)) of the original and new servo-constraints that aim to stabilize the internal dynamics of
the system. As it was shown in Chapter 4 this is possible by using the linear combination of the
original and a suitably selected new set of servo-constraints. In the followings, a new approach will
be proposed, which is the method of periodically varied servo-constraints. For short in the following
the method is called as the ’method of periodic servo-constraints ’.

Dealing with periodic control is motivated by the positive effect of periodic excitations. Since a
properly chosen frequency can help in balancing problems [85]. The swing-up problem of an inverted
pendulum can be solved with periodic control also [86–88]. In the act-and-wait control strategy [89]
the control action is periodically interrupted with a waiting phase when the effect of the control action
can be observed. Furthermore in [90] it is shown that the periodic variation of the control gains could
improve the dynamical behaviour of the system, and could stabilize the motion successfully.

Based on this previous good practices the main goals of this chapter are to introduce the
concept of the periodic servo-constraints, investigate their dynamic effects, and provide details on
their implementation in trajectory tracking control tasks. To find the stable control parameters is
also among the main objectives. The usefulness of the method is illustrated by two examples. The
periodic controllers are implemented for the trajectory tracking control of the previously used sliding
pendulum and planar Acroboter model.

5.1 Periodically varied servo-constraints

The servo-constraint based formalism explained in Sec. 2.2 makes it possible to divide the dynamics
of underactuated multibody systems into two parts: the controlled dynamics, which is described by
the servo-constraints, and the internal dynamics [20], which cannot directly be influenced by the
servo-constraints. In order to avoid the unstable internal dynamics in Chapter 4 a new set of servo-
constraint was introduced which was linearly combined with the original servo-constraints. This

53
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Figure 5.1. Servo-constraint switching scheme

linear combination remained the same for the whole duration of the controlled motion see Eq. (4.1).
The resulting system was stable and the modified task could be realized with tolerable trajectory
following error with respect to the original desired trajectory.

Here an alternative approach is introduced, when the servo-constraints are not simply modified
but also periodically changed in time as it is shown in Fig. 5.1. The switching of the servo-constraint
is mathematically formulated as

γ = κ(t) γ̂ + (1− κ(t))γs , (5.1)

where γ̂ is the vector original servo-constraints and γs represents a new set of servo-constraints,
which help to stabilize the internal dynamics. In addition, κ is a time dependent switching parameter.
When κ = 1 the original servo-constraint γ̂ is taken into account in a certain fraction of the time
period. The controller aims to accurately realize the desired motion during this time interval. The
switching parameter κ = 0 is zero the typically shorter remaining fraction of the time period. A
modified servo-constraint γs is applied during this time interval, and the controller tries to stabilize
the unstable internal dynamics, while the realization of the desired task becomes temporarily a
secondary objective. The control period in Fig. 5.1 is an integer multiple of the sampling period, Ts,
of the digital controller. For k sampling periods κ = 1 and the original task is realized, and for l
sampling periods κ = 0 and the stabilization of the internal dynamics is in focus.

Instead of small, but permanent modification of the original task, here, the goal is to only change
the servo-constraints temporarily, and via that, stabilize the internal dynamics of the controlled
system with smaller deviations from the original task.

In the followings, a stability investigations will be carried out in case of the earlier mentioned
examples for the selection of the switching pattern.

5.2 Stability analysis of the periodic control

During periodic control the required control torque is also calculated by using the computed torque
control method (see Eq. (2.20) or Eq. (2.21)), but one has to consider that the servo-constraints (5.1)
can change from one sampling period to the other. For the selection of the control parameters and
how the servo-constraints should change, the stability of the system is analyzed assuming a discrete-
time controller. When the servo-constraints do not change it is enough to determine the discrete
mapping Eq. (3.17) which connects states of the system in two constitutive sampling instants.
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In contrast here the control law is switched in time, therefore the transition matrix is also
changed during the control. Thus for the stability analysis, the transition matrix has to be derived
for the whole time period. It could be determined by combining the solutions as

zn+k+l = Ĉ zn, where Ĉ =
k+l∏

j=1

Cn+k+l−j . (5.2)

The proposed controller initially takes k steps with the original servo-constraints and then l steps
with the modified ones. Then the transition matrix of one period is

Ĉ = C(κ=1)k C(κ=0)l . (5.3)

The eigenvalues of Ĉ characterize the dynamical behaviour over one period which takes k + l

steps. The condition of the stability remains the same, namely all of the eigenvalues µi have to
be located in a unit circle of the complex plane. But in order to compare the decay rate of the
periodically controlled system with that of a conventionally (non-periodic) controlled system a new
measure have to be introduced, which can characterize the decay of a single sampling (Ts). Thus
from the spectral radii ρ [59] the decay index which is the average decay can be computed as [89]

ρ̄ =
(k + l )√

ρ . (5.4)

For large complex multibody systems the calculation of matrix C is computationally expensive.
However it is enough to compute these for a single time step at κ = 0 and κ = 1; then the stability
of different periodic patterns can be investigated.

The decay index ρ̄ of Ĉ can be used for determining stability behaviour as it is discussed in
Sec. 3.2.

5.3 Representative benchmark and real world problems

5.3.1 Sliding pendulum

This section revisits the sliding pendulum example discussed earlier. A new periodic controller is
applied and the results are compared to the Sec. 4.2.1). In Sec. 4.2.1 it is shown that the internal
dynamics is unstable when the endpoint of the pole is controlled. Here first the stability of the
controlled system will be analyzed, then it will be shown that with application of the periodic servo-
constraint the trajectory following error will be smaller.

System stability

In the stability investigation of the digitally controlled system the mechanical parameters were the
same as the parameters used in Sec. 4.2.1. The aim of the stability investigation is to discover
the stability behaviour of different periodic patterns. The parameters of the stability calculation
were the control gains KP, KD (see Eq. (2.21)) and the ratio of the application time of the original
servo-constraints γ̂ and the stabilizing terms γs. In the study the application time of the original
servo-constraints was varied k = (1,2, ..,10) , while the stabilizing terms in every case were applied for
l = 5 steps. The different stability charts are determined in plane of proportional KP and derivative
KD gains at fixed periodic pattern. The eigenvalues of the transition matrices are computed in
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300 x 300 points of the charts. The controlled system is considered stable when the decay index ρ̂
is less than one. The stability charts are presented in Fig. 5.2. In Fig. 5.2 the same shades of gray
belong to the same ranges of decay index ρ̄ . In the charts the fastest decaying transient belongs to
the smallest decay index ρ̄min. Among these ρ̄min = 0.93 is the smallest which corresponds also to
k = 2 at KP = 169[1/s] and KD = 15[1/s2]. In this case the original servo-constraint γ̂ is replaced
by γs for l = 5 steps in every second sampling period. The other performance measure could be the
area of the stable domains. Since in case of larger stable domains, since the parameter uncertainties
cause instability with less probability. The area of the stable domains i.e., ρ ≤ 1, were determined
by numerical integration using the Greens theorem [91]. It can be concluded that the stable domain
is the largest, when k = 2. In that case the control parameters can be chosen from the widest range.

The internal stability calculation resulted that the coupling of the original constraints and the
stabilizing terms have to be κ < 2/3 (see Sec. 4.2.1.1). Here we can see that in case of the k = 10 and
l = 5 there are no domains of stable parameters and in case of k = 9 and l = 5 there is a very small
domain of stable control parameters. Thus for the whole period the averaged value of the switching
function κ(t) have to be less than 2/3 (l/(k+ l)) also. It could be concluded that the boundary of the
application of the periodic servo-constraints is basically the same with the boundary of the blended
servo-constraint based method (see Sec. 4.2.1.2).

Compared to the blended servo-constraints here faster decay can be achieved while there the
smallest spectral radii was ρmin = .95 a here the smallest decay index is ρ̄min = .93. In case of the
periodic servo-constraint, the maximal area of stable domains is Ãperiodic ≈ 6.7 ·103[1/s3] and in case
of the blended servo-constraints it is Ãblended ≈ 1.2 · 103[1/s3] only. Thus the maximum area of the
stable domains are larger in case of the periodic controller.

Simulation study

In order to confirm the results of the stability investigation a numerical simulation was carried out. In
this study the lower end of the rod is commanded to follow a horizontal trajectory. This trajectory
is a C8 continuous polynomial which is defined in Eq. (4.13). This control task and the other
circumstances are the same with those in case of the blended servo-constraints (see Sec. 4.2.1.3)

The control parameters are selected based on the results of the stability investigations as KP =

169[1/s] and KD = 15[1/s2]. In one period of the periodic-control the original servo-constraints are
used for k = 2 and then it is replaced with the stabilizing terms for l = 5 steps. The motion of
the controlled point (end of the robot) is shown in Fig. 5.3 where the desired task and result of the
blended method are also presented. In Fig. 5.3 it can be seen that the realized motion overshoots
on the desired one. The average overshoot is smaller in case of the periodic control which results in
smaller trajectory following error. When the periodic controller was applied the maximum trajectory
following error is |γ̂| = 0.0059[m]. With the method of blended servo-constraints it is |γ̂| = 0.0085[m].
To quantify the whole motion the Root-Mean-Square (RMS) value [58] is used for the comparison,
which can be calculated as:

RMS =

√√√√ 1

n

n∑

i=1

γ(ti)2, (5.5)

where n is the number of samplings. Based on these values the method of periodic servo-constraints
could decrease the error of trajectory tracking with 38% respect to the controller of the previous
chapter. The applied performance measures of the periodic servo-constraints and linearly modified
servo-constraints are summarized in Table 5.1.
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Figure 5.2. Stability charts of the sliding pendulum with periodic servo-constraints
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Figure 5.3. Simulational results of the periodic servo-constraints in case of the sliding pendulum

Table 5.1. Stability and simulation results in case of the sliding pendulum example

Blended servo-constraints Periodic servo-constraints

max. area of stable domains [1/s3] 6.7 · 103 1.2 · 103

min.(ρmin )[-] 0.95 0.93
max(|γ|) [m] 0.0085 0.0059
RMS [m] 0.0351 0.0221

5.3.2 The Acroboter service robot platform

In this section the method of periodic servo-constraints is applied to the trajectory following control
of the planar model of the Acroboter system introduced earlier in Sec. 4.2.2. The goal here is to
show the applicability of a more complex, multibody system parametrized by non-minimum set of
generalized coordinates.

System stability

As it was shown earlier in Sec. 4.2.2, the main challenge in the control of the Acroboter system is to
stabilize the marginally stable internal dynamics and make the robot move on the desired trajectory
at the same time. With the given limited number of actuators these objectives require two different
set of servo-constraints: one that is moving the robot on the prescribed trajectory, and an other
which stabilizes the internal dynamics while still keeping the controlled point of reference close to
the desired path.

The stability investigation was carried out in the hanging down (zero nutation) position. The
stability calculation was carried out as it described in Sec. 5.2. Since the generalized coordinates are
dependent non-physical eigenvalues appear. Here only one geometric constraint is present. It means
that in case of the stability analysis of the sampled system 4m = 4 eigenvalues have to be separated.
The basis of the separation of the non-physical eigenvalues again, is that the spurious, non-physical
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ones are sensitive to the change of the artificial constraint stabilization gains in Eq. (3.8). Then
spectral radii ρ can be selected and depending on the length of the periodic pattern the decay index
µ̄ is calculated.

The stability charts in Fig. 5.4 show the stable domains of operation with different k values
(k = 1,2, . . . ,10) in the space of the control gain parameters KP and KD at the fixed number of
stabilizing control periods l = 1. In Fig. 6.5 the same shades of gray belong to the same ranges of
decay index µ̄. The areas of the stable domains were determined by numerical integration using the
Green theorem as in case of the sliding pendulum example. It can be concluded that the stable domain
is the largest (Ãper = 1.4 · 105), when k = 4. In that case the control parameters can be chosen from
the widest range. The fastest decaying transient belongs to the smallest decay index ρ̄min. Among
these ρ̄min = 0.94 is the smallest which corresponds to k = 1 and KP = 367 1/s2, KD = 28 1/s. It
means that the original servo-constraint γ̂ is replaced by γS in every second sampling period.

5.3.3 Trajectory tracking simulations

In order to see the performance of the trajectory tracking in case of the periodic servo-constraints
a simulation study was carried out. In the numerical simulation study the planar Acroboter model
has to follow a linear path with a trapezoidal velocity profile. The trajectory tracking task is the
same as before (see Sec. 4.2.2.3) and it is defined by Eq. (4.21). Similarly to the previous simulation
study of the Acroboter platform in order to check the stability of the controlled system a horizontal
perturbation force was applied on the cable connector between t = 1.0 s and t = 1.2 s.

In the previous section it was shown that the applied controller results locally in the fastest
decaying transients when KP = 1116 1/s2, KD = 46 1/s and k = 4 and l = 1. These parameters
corresponds to the smallest decay index (see Fig. 5.4). That stability investigation corresponds to
the initial configuration of the simulation task. In the presented simulations scenario basically only
the length of the main rope changes. That is the reason why parameters which are optimized for
the initial configuration can be used during the whole motion. When there are significant changes
in the configuration, the stability investigation have to be carried out in the characteristic points of
the trajectory and the different optimized gains can be linked with a gain scheduling technique [92].

The results of the simulation are presented in Fig. 5.5. The violation of the desired tasks,
namely the values of the original servo-constraints γ̂ are presented in Fig. 5.5a. The results show
that the motion of the investigated system could effectively be stabilized around the desired trajectory
with the application of the periodic servo-constraints. In Fig. 5.5a γ̂2 shows the horizontal position
error which maximal value is 1.5mm. In the vertical direction maximal servo-constraint violation γ̂3
is 1.8mm. The trapezoidal nature of these errors is caused by the prescribed trapezoidal velocity
profile. The peak value of γ̂1 is less than 2mm, which represents the vertical displacement error of
the cable connector.

Comparing the results of the periodic servo-constraint based and blended servo-constraint based
method (see Fig. 4.16 and Fig. 5.5) it can be concluded that the violation of the servo-constraints
is significantly smaller in case of the periodic servo-constraints. For comparing this error the RMS
trajectory following errors can be used as before. In the multidimensional case it is defined as [58]

RMS =

√
RMS2i , (5.6)
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Table 5.2. Stability and simulation results in case of the Acroboter platform

Blended servo-constraints Periodic servo-constraints

max. area of stable domains [1/s3] 4.9 · 104 1.4 · 105

min.(ρmin ) 0.94 0.94
max(|γ|) [m] 0.008 0.002

RMS [m] 0.0036 0.0018

where RMSi corresponds to original servo-constraints γ̂1. In case of the periodic servo-constraints the
calculation gives RMSper = 0.0015[m] and for the blended servo-constraints it is RMSblended = 0.0036[m],
which shows significantly smaller average trajectory following error in case of the periodic controller.

Unfortunately, it has to be noted that the periodic switching causes unwanted oscillations. It
could be supposed that in case of real application the dynamics of the actuators can suppress these
vibration. If it is not enough the zero to one transition in the switching function have to be smoothed.

The performance measures discussed in this section are summarized and compared to the
blended method in Table 5.2.
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Figure 5.4. Stability charts of the Acroboter system with periodic servo-constraints.
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Figure 5.5. Simulational results of the Acroboter system with periodic servo-constraint
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5.4 New results

A novel periodically switched controller was proposed for the trajectory tracking control of underac-
tuated mechanical systems with potentially unstable internal dynamics. This technique is called as
the method of periodically varied servo-constraints.

The applicability of the method was demonstrated by simulations in case of the sliding pendulum
and in case of the Acroboter platform.

Thesis 3.
In the method of periodically varied servo-constraints, the periodic switching be-

tween the different control objectives of trajectory following and stabilization is realized
by the blended servo-constraints γ = κ(t) γ̂ + (1 − κ(t))γs, where γ̂ and γs represent the
original control task and the stabilizing servo-constraints. In addition, κ(t) = κ(t+ T ) is
a piecewise constant periodic switching function, take only the values of zero or one. It
means that within a period, the controller aims to accurately realize the desired mo-
tion for a given time and the stabilizing servo-constraints are applied in the rest of the
period.

The root mean square value of the trajectory following error is decreased by 37% in
case of the sliding pendulum example and it is decreased by 50% in case of the Acroboter
platform, when κ(t) = κ(t+T ) periodic switching function is applied instead of the most
stabilizing constant κ values.

Related journal publication:
L. Bencsik, L.L. Kovács, and A. Zelei, “Stabilization of internal dynamics of underactuated

systems by periodic servo-constraints,” International Journal of Structural Stability and Dynamics,
2017, 14 pages, paper id: 1740004

Other related publications:
[67], [93].





Chapter 6

Reducing the effect of actuator
saturation with periodic control

Actuator saturation occurs when the controller’s output exceeds the physical limit of the actuators
of a system. In this case the controller can no longer properly realize the desired motion, and as
a result, large overshoots and sustained oscillation may develop. These increase the settling time
and potentially can lead to an unstable motion. In structured, industrial environments saturation
can be prevented by careful trajectory planning based on the well defined task and operational
conditions [94]. The use of large, powerful actuators is often also an option. When these are not
possible, e.g., in field and service robotics [95] where the environmental conditions and the task are
a priori unknown, saturation can result in poor dynamic performance. Performance deterioration
resulting from saturation is often called actuator windup [96], and the control methods trying to
minimize the undesired effects of saturation are commonly referred to as anti-windup techniques [97–
99]. These techniques were originally developed for linear single-input single-output systems [100].
A possible generalization to non-linear multi-input multi-output systems is shown in [101] by using
partial feedback linearization. A method that is directly applicable to non-linear mechanical systems
is presented in [102].

For trajectory tracking of robotic manipulators, feedback linearization essentially gives the same
control forces/torques as the classical computed-torque control method [24] (see Sec. 2.2). Therefore,
it is clear that when saturation happens, the nominal computed torques/forces are not available,
thus the nonlinear dynamic terms cannot be cancelled entirely and the robot will deviate from the
desired trajectory [101, 103]. A common element of the anti-windup control schemes is that the
saturating control force is compared to the ideal control force, and based on this, the input of the
controller is modified to reduce the trajectory following error. Very often it leads to problem specific
and somewhat ad hoc solutions, while model predictive control with constrained optimization can
offer a systematic framework to avoid actuator saturation [104]. Inversion of the dynamic model
can also make it possible to generate a feed-forward control action, or a modified control input, that
eliminates actuator saturation [105, 106].

Instead of taking a preliminary action, in the presented approach the aim is to redistribute the
load of the saturating actuator(s) among those which are still functioning in their nominal operating
range. This is feasible in robotic systems where typically only a few, but different actuators saturate
as the robot follows the commanded end-point trajectory. The posteriori compensation of the effect

65
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of saturation may become necessary when there are unpredictable external forces, which is typical in
human-robot interaction scenarios.

Often there are also more actuators available than what the task would require. For example,
when cooperating robots are moving an object [107]. Still, depending on the number of saturated
actuators, these robots can loose their ability to realize the desired task without redistributing the
load on the actuators. In case of a single robot with as many actuators as the task requires, saturation
will limit the control capabilities similar to those of the trivially underactuated system with fewer
actuators than the degrees-of-freedom.

The following introduced method is a further development of the my co-authored work [108].
In that references, upon saturation the controlled robotic system is considered temporarily under-
actuated, and a servo-constraint based controller (see: Sec. 2.2) is implemented to distribute the
load on the actuators differently with and without actuator saturation. In the saturating phase, a
reduced, linearly combined set of servo-constraints is used to minimize the trajectory following error.
This is somewhat similar to the method proposed in [101], where the control force is recalculated by
preserving the direction of the control action without saturation.

In the following I introduce a periodically switched controller which not only reduces the number
of servo-constraints, but also adapts to the dynamics of the system during saturation.

The idea of periodically varied servo-constraint is introduced in the previous chapter (Chapter 5.)
There the periodic switching was used for the stabilizing of the internal dynamics. Here the periodic
switching makes it possible to regulate all the original servo-constraints over time, one after the
other during the saturation, and it may also stabilize the internal dynamics of the temporarily
underactuated system.

It will also be demonstrated that a new performance measure, similar to dynamic manipulability,
can effectively be used to algorithmically choose and update the periodic control input. The role
of this is similar to how gain scheduling [92] accounts for the configuration dependent dynamic
behaviour.

6.1 Adaptive periodic control with servo-constraints

When the desired motion is specified in terms of descriptor coordinates Eq. (2.20) or Eq. (2.21)
can be solved for the required control efforts as long as there are enough non-saturating actuators
to realize the desired motion. When one or more actuators saturate, the solution of Eq. (2.20)
or Eq. (2.21) does not provide a feasible control force. Then only a subset of the original servo-
constraints can be enforced by the remaining non-saturating actuators, and the system becomes
temporarily underactuated with respect to the original task.

The basic problem in implementing a computed torque controller for systems with input torque
saturation is that some states of the system will evolve uncontrollably during saturation. The dynam-
ics associated with these uncontrolled states is referred to as the internal dynamics (see Sec. 2.1.3)
of the system. It depends not only on the physical properties and the load of a system, but also on
the selection of the controlled variables.

Considering sufficiently strong dynamic coupling, a different approach is to implement a switch-
ing controller that switches between two or more sets of servo-constraints in a way that the internal
dynamics remains stable and the desired trajectory is realized within tolerances.
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Figure 6.1. Block diagram of the proposed controller

A periodically switched controller was successfully applied for the trajectory tracking of different
devices previously in (Chapter 5). There the switching pattern and period were selected based on
the numerical stability analysis of the systems linearized around a given configuration.

First, the most stabilizing linearly combined inputs were found, and then, the duty cycle of an
equivalent periodic controller was constructed.The method relies on local stability results, but can
be extended for non-linear systems by using a control parameter scheduling technique [92].

Instead of local stability considerations, here, a more practical method will be proposed which
rely only on the actual state of the system, and adjusts the parameters of the periodically switched
controller continuously on the course of operation. For system stability, it is assumed that the
applied periodic controllers are stable and the parameter update frequency is sufficiently low to let
the potentially destabilizing transients dissipate [109]. To determine the time- and update periods
of the proposed controller a simulation study will be carried out.

The application procedure of the periodically switched control is outlined in Fig. 6.1. It shows
that until saturation occurs the classical computed torque controller is applied (see Sec. 2.2). Then,
the number of servo-constraints is appropriately reduced, different sets of servo constraints are formed,
and these are varied periodically by a new periodic servo-constraint signal γsat(t). One possibility to
do this is to take the linear combination

γsat =
N∑

i=1

κi γ̂i with κi(t) = κi(t+ T ) (6.1)

where array γsat contains a reduced set of servo-constraints with r < l elements, coefficients κi(t) =

κi(t + T ) control the switching between the different sets of servo-constraints with period T , and
N <

(
l
r

)
is the number of the considered different sets γ̂i which are subsets of the original control

objectives γ̂.
Figure 6.1 also shows that during saturation a reduced size, r×1, control input usat is considered

and the effect of the saturated actuators is represented by the constant external force term Qsat. With
these, and using the subscript sat to denote the terms affected by saturation, in case of non- minimum
set of coordinates Eq. (2.21) can be rewritten as




M ΦT −Hsat

Φ 0 0

Γsat 0 0







q̈

λ

usat


 =




Q + Qsat − c

−Φ̇q̇− π̇
−Γ̇satq̇ + ġsat −KD γ̇sat −KP γsat


 . (6.2)

For a given reduced set of servo-constraints γsat, the required control inputs usat can be cal-
culated based on this equation. For the selection and switching between different, reduced sets of
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servo-constraints, a manipulability type performance index is proposed. The performance index is
evaluated at certain time instants and a periodic control signal is formed such that more time is
allocated for the sets with the higher indices. This way, those servo-constraint sets are prioritized
where there is a stronger coupling between the control inputs and the desired accelerations.

The proposed performance index can be introduced by considering the minimum coordinate
parameterization of the equation of motion in (6.2) as

BTMBp̈ + MḂṗ + BT(c−Q−Qsat) = BTHsatusat , (6.3)

where transformation q̇ = Bṗ defines the new parametrization the same way as the new set of
generalized velocities were introduced in Sec. 1.2.1. Note, that p is conveniently selected as the
array of operational space coordinates, the evolution of which are directly prescribed by the servo-
constraints. Then, neglecting external forces other than the control input, the linearized equations
become

M
(
p̈−M

−1
BTQsat

)
= BTHsatusat , (6.4)

where M = BTMB is the operational space mass matrix [110], and p̈ −M
−1

BTQsat is the accel-
eration due to the non-saturated actuators. By denoting this acceleration with ā and introducing
G = BTHsat, the uniformity of the control input to acceleration gain is given by the manipulability
ellipsoid [111]

āTM ā ≤ 1 with M =
(
G†M

)T(
G†M

)
, (6.5)

where G† is the Moore-Penrose pseudo-inverse [44] of the transformed control input matrix G. Also,
let ei be an l dimensional unit vector, containing r non-zero elements associated with a certain
reduced set of servo-constraints. With this, the effect of the control input in a specific direction can
be characterized by the performance index

zi =
1√

e
T

i M ei

. (6.6)

Physically this measure shows the feasible accelerations in the direction of a given servo-constraint
set γi, and the time to be devoted to the realization of the considered set of servo-constraints within
one control period may be obtained as

∆ti =
zi T∑N
j=1 zj

. (6.7)

Thus the activation time ∆ti of a specific servo-constraint set within one period, is proportional to
the performance index zi. Equations (6.6) and (6.7) help to find a physically motivated periodic
control signal. This needs to be updated in the course of the motion by considering the current state
of the system, or, in off-line calculations, by using the desired values of the servo-constraints.

6.2 Robotic manipulator example

In the followings, as the simplest non-trivial example, we consider the trajectory tracking control
of a two-link manipulator. This is similar to the anti-windup control problem of a SCARA robot
analysed in [102] and it is often used as a benchmark problem in robot control [94, 103].
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Figure 6.2. Two-link planar manipulator

The system shown in Fig. 6.2 has two identical links with l1 = l2 = 0.4m andm1 = m2 = 0.2 kg .
A homogeneous mass distribution is considered, and the configuration is described by the independent
generalized coordinates q = [θ1, θ2]

T. The manipulator is in the horizontal plane, and its end-effector
(point B) is required to follow a circular trajectory with a trapezoidal velocity profile. This is shown in
Fig. 6.3 where the base joint of the manipulator is located in the origin, and the circular trajectory is
centered at x = 0 and y = 0. The maximum values of the acceleration and velocity for the trapezoidal
velocity profile are amax = 1m/s2 and vmax = 0.7m/s. The corresponding desired operational space
trajectories, xD(t) and yD(t), are shown in Fig. 6.3. The parameters KP and KD in (6.2) are set
to 40N/m and 30Ns/m, respectively.When τmax = 0.06Nm is selected as the saturation limit for
both motors, these parameters ensure that only the first motor will saturate during the prescribed
maneuver.

For the considered simple manipulator it is straightforward to derive the equation of motion in
operational space coordinates p = [x, y]T. Because of the initially chosen independent set of relative
coordinates q = [θ1, θ2]

T, there is no need for geometric constraints, and the transformation matrix
B in (6.3) is simply the inverse of the manipulator Jacobian. Also, for input u = [τ1, τ2]

T, the control
input matrix H is the identity matrix. Taking these into consideration, and assuming that only the
shoulder motor with the higher loads will saturate, the components of the linearized equation of
motion (6.4) are

M =

[
m11 m12

m21 m22

]
, B =

[
b11 b12

b21 b22

]
, p̈ =

[
ẍ

ÿ

]
, Qsat =

[
τ1max

0

]
, Hsat =

[
0

1

]
and usat = τ2 ,

(6.8)
where, for the sake of brevity, the elements of M and B are only indicated by single symbols. In
addition, the circular trajectory shown in Fig. 6.3 is defined by the servo-constraints

γ(p(q), t) =

[
l1 cos(θ1) + l2 cos(θ1 + θ2)

l1 sin(θ1) + l2 sin(θ1 + θ2)

]
−
[
xD(t)

yD(t)

]
, (6.9)

where xD(t) and yD(t) define the desired motion of the end-effector of the manipulator. Note, that
in the acceleration level equation (2.17) matrix Γ = ∂p/∂q is precisely the manipulator Jacobian.
It can be also seen that, during saturation, only the remaining single actuator, τ2, can be used to
realize both servo-constraints.

By having a planar motions specification, one can either consider γ1 or γ2 as the only elements
of two different reduced sets of servo-constraints. According to (6.3), these different sets can be
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combined in a single expression as

γsat = κ(t) γ̂1 + (1− κ(t)) γ̂2 (6.10)

where now γ̂i ≡ γi, i = 1,2 and κ(t) = κ(t+T ) controls the switching between these servo-constraints.
While in the previous chapter the pattern of the periodic switching was not changed during the
operation (see Fig. 5.1), here it is updated based on the actual state of the system. This is illustrated
in Fig. 6.4 where the update parameter, j, and the time period, T , are free control parameters which
need to be tuned. The tuning of these parameters can be done by stability investigations in the
different configurations or by simulations or these can be selected empirically. For a certain time
period T , the switching between the control objectives represented by each reduced set of servo-
constraints can then be determined based on equation (6.7). For the two-link manipulator example,
this equation gives the duty cycle parameters, ∆t1 and ∆t2 = T −∆t1, as follows

∆ti =
ziT

z1 + z2
, i = 1,2 with z1 =

b221 + b222
| b21m11 + b22m21 |

and z2 =
b221 + b222

| b21m12 + b22m22 |
, (6.11)

where zi =
(
eTi M ei

)−1/2, and unit vectors e1 = [1, 0]T and e2 = [0, 1]T represent the different
servo-constraint directions. When there is no actuator saturation, the required control input can be
determined based on equations (2.20) and (6.9). During saturation, equations (6.2) has to be con-
sidered with the terms defined in equations (6.8) and (6.9), and using the periodic servo-constraints
given by equations (6.10) and (6.11).
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Figure 6.5. Average trajectory following error with different control parameters
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For tuning the periodic controller, a possible procedure is to simulate the system with different
j and T pairs, and use the RMS (see Eq. (5.6)) value of the trajectory following error to assess the
control performance. For the trajectory considered (see Fig. 6.3), this results in the contour plot
shown in Fig. 6.5. It can be seen that the pair j = 7 and T = 0.04 s can provide a good tracking
performance, where the chosen larger value of parameter j is for reducing the computational efforts.
Also, the trajectory following error is bounded everywhere in the investigated domain of control
parameters and therefore the system is stable in this domain.

Simulation results obtained with the selected parameters are compared to those of the classical
computed torque control in Fig. 6.6. It can be seen that both methods have simultaneous, but
different magnitude peaks in the constraint violations. The periodic controller seems to outperform
the other in the second half of the simulation, and the system recovers from the saturation slightly
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Figure 6.7. Norm of servo-constraint violations for different methods with amax = 1m/s2

Table 6.1. Peak and average trajectory tracking errors (amax = 1m/s2 )

Control method max γ [m] RMS [m]

Original servo-constraints 0.046 0.0164
Zaccarian [96] and Sun [112] 0.033 0.0158
Morabito [102] 0.034 0.0130
Zelei [108] 0.038 0.0134
Periodic servo-constraints 0.031 0.0105

faster when periodic servo-constraints are applied (see τ1 in Fig. 6.6). When the Euclidean norm
of the servo-constraint violation is considered, the better performance of the periodic controller is
obvious. This is shown in Fig. 6.7 and in Tab. 6.1, where the results obtained with three other
methods are also compared.

The method proposed in our previous work [108] is similar to this method in the sense that
when saturation happens a reduced set of servo-constraint is constructed, which is then used until
the system recovers from saturation. The main difference between that and the proposed approach is
the periodic variation of different reduced sets of servo-constraint as opposed to using only one. Also,
in the present work I propose an algorithmic approach to select to which extent the different sets
of servo-constraints, representing different control objectives, are considered in the periodic control
signal. In Fig. 6.7 it is shown that the two methods perform similarly in the beginning and at the
end of the simulated motion, but the use of periodic servo-constraints could considerably reduce the
trajectory tracking error in the middle. This is the part of the trajectory which changes the most
(see Fig. 6.3). We also note that the results are directly comparable as the method in [108] does not
require any additional control parameters to be defined.

As a second method to compare with, let us consider a specific anti-windup control scheme
presented in [102]. Among the many general purpose anti-windup schemes, this one is specifically
developed for Euler-Lagrange systems. It is well suited for robotic mechanical systems, which makes
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Figure 6.8. Norm of servo-constraint violations for different methods with amax = 1.2m/s2

the comparison clearer. For the implementation of the method, in the present example, three addi-
tional control parameters had to be chosen. By keeping the notations of the referenced paper, these
anti-windup design parameters are Kg = 0.99, Kq = 10 and K0 = 1. Parameter Kg is selected
to the same value used in [102] in a similar example, while the PD type control gains Kq and K0

were tuned empirically to achieve the smallest trajectory tracking error. This method and the use of
periodic servo-constraints result in similar trajectory following errors almost in the entire course of
the motion, but the periodic controller shows a much better convergence to the desired zero steady
state error.

The third and last comparison was made with a classical anti-windup control scheme [96] by
following the implementation used in reference [112]. The method is exclusive to single-input single-
output systems, and therefore it was only applied to the saturating actuator (shoulder motor) of the
robot by using joint space position control during saturation. The anti-windup control gains were
empirically selected as k01 = 0.6 and kl = 10, where the original notations used in [112] are kept.
When there was no saturation, the servo-constraint based computed torque controller (2.20) was
used. In summary, this classical approach could also reduce the effect of actuator saturation, but it
turned out to be less efficient that the other methods in the considered benchmark example.

When the tracking error of the four different methods are compared, Fig. 6.7 suggests that
the best results can be achieved with the method of periodic servo-constraints. This is confirmed
by the RMS values presented in Tab. 6.1. The RMS value is accepted as a characteristic measure
in other works [113] as well. It is clearly shown that the methods in [96], [102] and [108] have a
similar overall performance, while the method of periodic-servo constraints gives both the lowest
peak- and average tracking errors. With respect to the use of the original servo-constraints, the
average tracking error is improved by 36%, and the improvement compared to the other controllers
is about 20% (see Table 6.1). The differences between the methods are revealed better when a
higher acceleration amax = 1.2m/s2 is set for the desired trajectory. The corresponding results are
summarized in Fig. 6.8 and in Tab. 6.2. The proposed switched periodic controller outperforms the
others almost everywhere except at the beginning of the motion, and it has the best performance in
terms of the average tracking error (see Tab. 6.2). It is also important to note that for the higher
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Table 6.2. Peak and average trajectory tracking errors with amax = 1.2m/s2

Control method max γ [m] RMS [m]

Original servo-constraints 0.27 0.1083
Zaccarian [96] and Sun [112] 0.120 0.0633
Morabito [102] 0.105 0.0445
Zelei [108] 0.110 0.0401
Periodic servo-constraints 0.130 0.0364

acceleration trajectory the same periodic control parameters (j = 7 and T = 0.04 s) were used as
before. This can explain the initially larger errors, and also show the robustness of the method with
respect to changing the desired trajectory.
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6.3 New results

Driving torque saturation is an undesired event in trajectory tracking control of mechanical systems,
which makes the controlled system temporarily underactuated. To reduce the undesired dynamic
effects due to this underactuation, a period motion controller was proposed. For the algorithmic
tuning of the controller a new manipulability type performance measure was introduced. A detailed
comparison with other techniques was carried out in case of a planar robot application. The proposed
controller is described in the next thesis.

Thesis 4.
The proposed control concept for driving torque saturation in trajectory tracking

control is detailed in the followings. Until saturation occurs the classical computed
torque controller is applied. During saturation, the number of servo-constraints is
appropriately reduced, different sets of servo-constraints are formed, and combined
into a new periodic servo-constraint signal γsat(t). The periodic servo-constraint signal
is formed as

γsat =

N∑

i=1

κi γ̂i with κi(t) = κi(t+ T ),

where κi(t) controls the switching between the different sets of servo-constraints, and
N <

(
l
r

)
is the number of the considered different sets, γ̂i, which are subsets of the

original control objectives, γ̂. The algorithmic selection of a suitable periodic control
signal is based on the introduced performance measure, which rates the different servo-
constraint sets, γ̂i, based on their effects and importance.

Compared to different classical methods taken from the literature the average track-
ing error is improved by at least 20%. The maximum trajectory following error is
decreased by 7% compared to the best performing classical method investigated.

Related journal publications:
[1] L. Bencsik and L.L. Kovács, “Reduction of the effect of actuator saturation with periodic

servo-constraints,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Me-
chanical Engineering Science, 2016, published online in October 20, 2016, 10 pages.

[2] A. Zelei, L. Bencsik, and G. Stépán, “Handling actuator saturation as underactuation: Case
study with acroboter service robot,” Journal of Computational and Nonlinear Dynamics, vol. 12, no.
3, 2017.

Other related publication: [115]





Chapter 7

Constrained motion analysis of human
running

The mechanical analysis of running requires algorithmic tools due to the continuous change of topol-
ogy. That is the reason why the constrained based techniques of multibody systems are useful tools
in the analysis of running or walking. The human leg has a sophisticated muscular structure [116]
and it contains much higher number of muscles than its degrees of freedom [117]. At the same time,
human walking and running motion is partially passive, underactuated.

In order to discover this matter, many researchers study the behaviour and dynamical charac-
teristics of passive [118] or partially passive [119] walkers which are typically underactuated devices.
Energy efficiency of underactuated walker devices are obviously better than that of the fully actuated
and controlled robots. Energy efficiency is important in general. Therefore the source of energy losses
needs to be investigated. In case of normal circumstances, the dissipation effect of aerodynamical
forces and other damping forces can be neglected. The main energy dissipation mechanism is related
to how the foot strikes the ground. This is why energy efficient running requires years of training
which changes the running gait in a way that the momentum of the runner is better preserved in the
horizontal direction.

Many studies like [120] and [121] help to understand bipedal locomotion, human walking and
running. Several approaches have been developed which try to realize the healthy, injury preventing,
energy efficient and natural way of running in practice [122–124].

Many biomechanical models [125], [126] of different complexity are used to understand the
dynamics of human running, including impact dynamics. Here the goal is to introduce a minimally
complex biomechanical model which can characterize the dynamic effects of foot strike pattern and
shank angle at foot touchdown.

7.1 Minimally complex mechanical model

The foot strike pattern and the dynamical and kinematical differences between barefoot and shod
running were discussed in [127]. The related experimental results were interpreted from a mechanical
point of view by [125]. A low DoF model was introduced for investigating the effect of foot strike
pattern on impact intensity. The impact intensity is related to the magnitude of the reaction forces
due to foot-touchdown. Foot strike pattern is described by the dimensionless parameter s called
strike index which interprets the centre of pressure of the ground foot contact for the planar model
[128].

77
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RFS MFS              FFS                

Figure 7.1. Strike patterns: rearfoot (RFS), midfoot (MFS) and forefoot (FFS) strike

Based on the initial contact the strike patterns are sorted into rearfoot/heel (RFS, s = 0 . . . 0.33),
midfoot (MFS, s = 0.33 . . . 0.66) or forefoot (FFS, s = 0.66 . . . 1) strike as the simplified interpretation
shows in Fig. 7.1.

Fig. 7.2a shows a planar model with horizontal foot and vertical shank. The ground contact
location (point O) is defined by s respect to the ankle. Stiff and compliant ankle joints (point B)
were considered. The pre-impact velocity was considered vertical. The authors drew the conclusion
that forefoot landing provides lower impact intensity.

An extended analysis of the same mechanical model was carried out and a more algorithmic
mechanical approach was applied in [126]. As Fig. 7.2b shows, this model still contains the foot and
the shank, but the foot and shank angles (α and β) are new parameters. The calculations were based
on the consideration that ground contact is represented by geometric constraints. The kinetic energy
content associated with the constrained motion, which serves as an indicator of foot impact intensity,
was calculated. The authors confirmed the results of [125] and arrived to the conclusion that the
shank angle β, which is responsible for foot positioning, does not affect the impact intensity in case
of FFS and has limited effect for the case of RFS.

The model shown in Fig 7.2b is still not detailed enough to be able fully describe all the
important characteristics of the different running styles. Some experimental observations cannot be
explained by the model in Fig. 7.2. For example the effect of shank angle can not be investigated.

Reference [125] states that in case of RFS, ankle compliance has little effect and there is some
contribution from mass above the knee, which also encourages us to investigate an extended model
which is not limited to shank, foot and stiff ankle only. Considering a compliant ankle can be
important as the foot and the shank are connected by muscles and tendons which are flexible. On
the other hand the forces exerted by flexible components are typically neglected during impact [126].

The proposed model shown in Fig. 7.2.c consists of 3 segments: thigh, shank and foot joined by
ideal, frictionless joints. An additional pointmass mb is attached representing the mass of the trunk
and the other not-modelled body parts, like head, arms and other leg. Inertial and geometric data
are collected in Table 7.1 and were adopted from [129–131]. The data correspond to an average 24
years old male person with 73 kg bodyweight and 173 cm height. Segmental centre of gravity (CoG)
locations are measured from proximal end of each segment. The moment of inertia around CoG axis
of each segment is estimated by assuming a homogeneous rod model.

7.2 Impact characterisation

A feature of legged locomotion systems is the changing topology. For instance, when ground and foot
get in contact, new constraints arise and the model will have less DoFs than in the airborne phase of
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Table 7.1. Inertial and geometric data of body segments

mass moment of inertia length CoG
kg kg m2 m m

trunk mb = 58.5 - - -
thigh mt = 10.3 Jt = 139 10−3 lt = 0.402 dt = 0.164

shank ms = 3.16 Js = 48.2 10−3 ls = 0.428 ds = 0.188

foot mf = 1.00 Jf = 0.456 10−3 lf = 0.274 df = 0.032
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Figure 7.2. Single rigid body (a), jointed shank-foot (b) the proposed minimally complex model
(c)

running. Besides, foot impact with the ground is also an important phenomenon. We apply a con-
straint based approach [132] and [126] for handling both challenges. This approach has advantages
over the method of angular momentum conservation, which is usually applied when bipedal locomo-
tion systems [125] and passive dynamic walking mechanisms [118, 133–135] are analysed. The main
strength of the geometric constraint based approach is the applicability for closed kinematic loops
(e.g. walking, when both legs touch the ground for finite time), which is not true for the approach
using conservation of the angular momentum [136, 137].

In the presented approach the finite (continuous) dynamics and the discrete collision event
(impulsive dynamics) are distinguished in the mechanical description of legged locomotion. It is
assumed that the ground-foot collision is instantaneous, which leads to infinitely large instantaneous
forces over an infinitesimal time duration so that the net impulse due to the impact force is finite
[125, 126, 136, 137]. Completely inelastic collision is also assumed, so that there is no rebound
[125, 126]. Considering a normal running, it is assumed that there is no slip of the foot. Between
the impacts the dynamics can be described by the classical tools of multibody dynamics as Eq.(1.5).
Rewriting Eq. (1.5) the impulsive dynamics can be written in the following form [126] [138]:

M(q̇+ − q̇−) = IF, (7.1)
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where q̇− = q̇(t−i ) and q̇+ = q̇(t+i ) are the generalized velocities right before and after the foot-
ground collision, respectively. IF is the net impulse of those constraint forces which cause the sudden
topology change, all other active and constraint forces are finite, thus the impulse of those are
neglected. If the mass matrix M is invertible the post-impact generalized velocity vector q̇+ can be
expressed from Eq. (7.1).

In the followings, the focus is on the impulsive event associated with the ground-foot impact.
The ground-foot contact is considered as an instantly arising geometric constraint (1.3) as

ϕ(q) =

[
ϕtan

ϕnorm

]
=

[
xO

yO

]
= 0, (7.2)

that expresses the anchoring of point O. For satisfying the no-slip condition the Coulomb friction
coefficient must be larger than the critical value [139]:

µc =

∣∣∣∣
ΦnormM−1ΦT

tan

ΦnormM−1ΦT
norm

∣∣∣∣ , (7.3)

where Φtan and Φnorm are the Jacobians of the tangential and normal direction constraints respec-
tively.

The velocity fields on the impacting bodies change instantaneously, and the change in the
configuration is neglected. This is because of the sudden change in topology, which is described
by the constraint ϕ(q) = 0 in the model, thus the post-impact velocity have to be admissible by
the contact constraint. The separation of admissible and constrained motion spaces was already
introduced in Sec. 1.2.3 in detail. Assuming perfectly inelastic collision and based on the expression
described in Eq. (1.16) the post impact velocity can be described as

q̇+ = Paq̇
−, (7.4)

where matrix Pa projects into the space of admissible motion (See: Eq. (1.16)). Substituting the
expression (7.4) into (7.1) gives

M(I−Pa) q̇− = IF. (7.5)

Using the relation between the admissible and constraint motion space (Pc = I−Pa) the following
relation can be deduced

MPc q̇− = IF, (7.6)

where Pc q̇− is the generalized velocity which vanishes due to the perfectly inelastic collision consid-
ered.

From the energetic point of view, running can be characterized with the portion of kinetic energy
which will be completely dissipated during impact [139]

Tc =
1

2
(q̇−)TPT

c MPcq̇
−. (7.7)

The quantity Tc is called constrained motion space kinetic energy (CMSKE). Considering the related
literature [126], [132] as a performance measure the strike intensity can be characteried by the
CMSKE.
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7.3 Numerical studies

The proposed 5 DoF model is described by the Cartesian coordinates of point A, β and γ are measured
relative to the vertical direction and α is measured relative to the horizontal direction

q =
[
xA, yA, α, β, γ

]T
. (7.8)

The mass matrix, appearing in equation (7.7), is shown below. For the sake of brevity the new
symbols m0 = mb+mt+ms+mf , mbts = mb+mt+ms and mbt = mb+mt were used. Furthermore,
shorthand notation are used as sx = sinx and cx = cosx. It is also introduced that s+αγ = sin(α+γ),
s+αβ = sin(α+ β) and c−βγ = cos(β − γ).

M =

[
M11 M12

M21 M22

]
, (7.9)

where the sub-matrices are the followings

M11 =

[
m0 0

0 m0

]
,

M12 =

[
(lfm0 − dfmf )sα (dsms − lsmbts)cβ (dtmt − ltmbt)cγ

(lfm0 − dfmf )cα (dsms − lsmbts)sβ (dtmt − ltmbt)sγ

]
,

M21 =




(lfm0 − dfmf )sα (lfm0 − dfmf )cα

(dsms − lsmbts)cβ (dsms − lsmbts)sβ

(dtmt − ltmbt)cγ (dtmt − ltmbt)sγ


 ,

M22 =



J2
f + l2fm0 − (2lfdf − d2f )mf lf (dsms − lsmbts)s

+
αβ lf (dtmt − ltmbt)s

+
αγ

lf (dsms − lsmbts)s
+
αβ J2

s + l2smbts − (2lsds − d2s)ms ls(ltmbt − dtmt)c
−
βγ

lf (dtmt − ltmbt)s
+
αγ ls(ltmbt − dtmt)c

−
βγ J2

t + l2tmbt − (2ltdt − d2t )mt


 .

(7.10)

When the foot is in contact with the ground the geometric constraint vector ϕ is

ϕ =

[
xA − (1− s)lfcα
yA + (1− s)lfsα

]
, (7.11)

from which the following constraint Jacobian can be calculated as

Φ =

[
1 0 (1− s)lfsα 0 0

0 1 (1− s)lfcα 0 0

]
. (7.12)

Using these expressions and the formulation developed in Eqs.(7.5)-(7.7), the constraint motion space
analysis of different foot strikes can be carried out. Three main cases will be considered. First, some
results available in the literature will be reproduced with the proposed model. Then two more
accurate models will be analyzed in order to find a model which is able to characterize different
running styles.
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(a) CMSKE in case of the proposed model (b) Result of the corresponding literature [126]

Figure 7.3. CMSKE in case of straight leg and vertical pre-impact velocity

Straight leg, vertical pre-impact velocity

Fig. 7.3a shows the calculated CMSKE assuming straight leg and vertical impact velocity. The
presented result corresponds to model (c) in Fig. 7.2 with parameters α = 0 (horizontal foot), β = γ

(straight leg) and pre-impact velocities ẋA = 0m/s, and ẏA = −1m/s. In Fig. 7.3a the CMSKE is
normalized with respect to the pre-impact kinetic energy. For the sake of better visibility, logarithmic
scale is used in Tc/T axis. The calculations confirm that shank angle β can have a small effect on
the impact intensity at low strike index: the scaled impact intensity (Tc/T ) is 98% at β = 0 and 92%
at β = 15◦. Furthermore, the impact intensity is a symmetric function of β, which does not fully
agree with practical evidences [140], [141]. The positive β value corresponds to overstriding which
is a not preferred running form. Fig. 7.3a also confirms that larger strike index s provides smaller
impact and higher energy efficiency (the ratio of Tc and T is 0.25% at s = 1).

The results qualitatively agree with result of the literature [126] (see Fig. 7.3b). The differences
between the two surfaces are caused by the difference of the applied parameters and in case of the
Fig. 7.3a the relative value of the CMSKE is proposed.

The practical experiences [122–124] encouraged us to accomplish the following two test cases
that are expected to show that the shank angle β has a more important effect on the impact intensity.

Bended knee, vertical pre-impact velocity

In the second study, the angles of the thigh and the foot were set to γ = 15◦ and α = 0◦ respectively,
while the shank angle β was varied in the range of −15◦ to 15◦. The CMSKE is depicted in Fig. 7.4.
The results are contradictory with [126], because β does have a significant effect on Tc. The worst
case is rearfoot strike combined with extended knee (β = γ), when almost 100% of the kinetic energy
is absorbed by the impact. Overstriding (positive values of β) causes large energy loss and high
impact, as it is expected based on practical observations [140]. Because of involving thigh and point
mass mb in the model, the results became much more sensitive to the varied parameters. The results
show that overstriding can have energy absorbing effect.
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Figure 7.4. CMSKE (Tc) as function of strike index (s) and shank angle (β) in case of bended
knee and vertical pre-impact velocity

Bended knee, vertical and horizontal pre-impact velocity

In the third study the effect of the horizontal component of the pre-impact velocity is investigated.
In the second, previous study it was neglected for the sake of simplicity, but it can have an important
effect on the impact intensity. In the horizontal direction three different speed values were considered
for point A as ẋA = 3m/s, ẋA = 4m/s ẋA = 5m/s. The vertical speed ẏA = −1m/s is the same
as before. The consideration of more realistic pre-impact velocity condition was also encouraged
by reference [142] which concludes that the foot placement and velocity is prepared well before
touchdown. Fig. 7.5 suggests that the effect of angle β becomes more important as the horizontal
velocity component increases. Although only 28% of kinetic energy is lost in maximum. It is because
the horizontal speed component of the body does not change too much.

The constrained motion space kinetic energy is minimal, when the strike index is large and the
shank angle β is close to zero. In the best situation 2% of the pre-impact kinetic energy is absorbed
only. The results of Fig. 7.5 change significantly comparing to Fig. 7.4 and Fig. 7.3a, because the
horizontal velocity components cannot be highly influenced by the ground force which acts in vertical
direction.

7.4 Concluding remarks

It is known from experience that overstride and RFS is in relation with each other. Usually over-
striding impels RFS, and it is natural that FFS occurs if the landing point is nearly below the CoG of
the body. Therefore the practically relevant regions are highlighted in Figs 7.3a, 7.4, 7.5. The results
indicate that landing below CoG (β < 0) together with forefoot landing (s > 0.5) is preferable, while
overstriding (β > 0) together with RFS (s < 0.5) is better to be avoided, from the viewpoint of
impact intensity and impact induced kinetic energy loss.

Fig. 7.6 (published in [143]) illustrates the evidence how important the shank angle is. When
running downhill, one tries to keep the speed low. The breaking technique is basically the overstriding,
because it results in the largest energy absorption. In contrast, a long distance road race runner,
whose aim is to save energy, keeps his/her shank in negative angle before foot impact (see Fig. 7.6
right). The results correspond to this practical knowledge.

The Tc/T ratio difference at β = 0◦ and β = ±15◦ was 6% only when bended knee and
horizontal velocity was not considered (see Fig. 7.3a). Contrarily, in the extended model and the
consideration of horizontal velocity component resulted in 26% difference in the kinetic energy ratio
when overstriding compared to not overstriding as Fig. 7.5 shows.
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Figure 7.5. CMSKE as function of strike index and shank angle using the bended knee model
horizontal and vertical pre-impact velocity components

It is showed that more precise results can be obtained, if the foot-shank model is extended
with the thigh and the inertia of the other body parts. Also the consideration of horizontal velocity
component of the body leads to more realistic results. The results also show that the shank angle is at
least as important parameter as the strike pattern. However, the practical meaning of this statement
is in total correspondence with the referred literatures [125–127] because proper shank angle induces
forefoot strike which was shown to be the best for barefoot running in [125].

Furthermore in contrast to [126] [125], the analysis revealed that shank angle highly affects the
impact intensity. Forefoot strike implies lower impact intensity and energy absorption than rearfoot
strike, which is in coincidence with the literature [144]. It was shown that the horizontal velocity
cannot be neglected when foot impact is analyzed. Dynamical calculations provided information
about the effect of strike pattern and foot positioning on the energy efficiency and impact intensity
which can be used as a measure for the risk of injuries.
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Figure 7.6. Different landing strategies are used when running downhill (left) or running on flat
track (right) [143]



86 Constrained motion analysis of human running

7.5 New results

The impact intensity in different running modes is characterized by the constrained motion space
kinetic energy (CMSKE), which is absorbed by the ground-foot contact. Using the models recently
proposed in the literature it is shown that lower ground-foot impact is generated when fore-foot strike
occurs than in case of rear-foot strike. The corresponding CMSKE values are independent of the
sign of the shank angles. This is in contrast with the specialist literature, where it was shown that
landing with a positive shank angle, i.e., overstriding causes larger impacts. Here, an improved planar
model was proposed for the analysis of different modes of running, which is a minimally complex
representative that describes the phenomenon of overstriding, and the effect of rear- and fore-foot
strikes at the same time.

Thesis 5.
The improved planar model contains the leg, the shank, the thigh and an additional

pointmass representing the mass of the unmodelled body parts. With the proposed
extended model, the proper effect of the shank angle can be captured because the
absorbed kinetic energy (CMSKE) is larger in case of the positive shank angle than
in case of the negative shank angle. The results confirm the physical observations.
Furthermore, the proposed model shows that lower ground-foot impact is generated
when fore-foot strike occurs than in case of rear-foot strike, which corresponds to the
results obtained by the other models of the recent literature.

Related journal publication:
L. Bencsik and A. Zelei, “Effects of human running cadence and experimental validation of the

bouncing ball model,” Mechanical Systems and Signal Processing, vol. 89, pp. 78–87, 2016
Other related publications:
[136], [137], [145], [146]
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[138] C. Carpentier, J. M. Font-Llagunes, and J. Kövecses, “Dynamics and energetics of impacts in crutch
walking,” Journal of Applied Biomechanics, vol. 26, no. 4, pp. 473–483, 2010.
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